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Abstract: - In response to major trends in the telecommunications market today and under influence of the 
emerging distributed computing technology the telecommunications industry is embracing distributed object 
platforms as a means enabling the successful participation in the open global services market of the foreseen era 
with new and advanced service offerings under increasing competition in a multi-vendor environment. In this 
realm, this paper presents an attempt to evaluate the performance of DCOM and CORBA under conditions 
which are common in telecommunications services engineered as distributed object applications. Finally, after 
the examination of important issues regarding the DCOM remoting architecture, some conclusions are drawn. 
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1  Introduction 
The telecommunications industry is currently facing 
a number of challenges imposed by changes in the 
telecommunications market. Deregulation, liberalisa-
tion, and competition imply requirements for higher 
utilisation of the network infrastructure, shorter time 
to market for new telecommunications services, 
much higher degree of customisation of these ser-
vices, cost reduction of service development, open 
network provision, global connectivity, and global 
information access. Furthermore, both telecommuni-
cations networks and services are ever growing in 
sophistication and complexity with a tendency to 
become large-scale, highly decentralised and hetero-
geneous systems involving numerous users and re-
sources. All these changes require more complex 
software systems and thus make evident the neces-
sity to accelerate the integration of information tech-
nology and telecommunications. 

Under these conditions the telecommunications 
industry is gradually adopting a new approach for 
the development, construction, and management of 
software for telecommunications services. This ap-
proach is characterised by the increased use of ob-
ject-oriented Distributed Processing Environments 
(DPEs) as the infrastructure for new telecommunica-
tions services (telematic services) because they 
promise the benefits of more flexible service design 
and  deployment, increased software reuse, and in-
creased interconnection capabilities with external 
resources [1].  

Currently, the two most important available distri-
buted object platforms are Microsoft’s (Distributed) 
Component Object Model (COM/DCOM) [2] and 
the Common Object Request Broker Architecture 
(CORBA), which is supported by the Object 
Management Group (OMG) [6]. Both of them assist 

service developers to cope efficiently with the com-
plexity inherent in the process of realising telecom-
munications services as open distributed software 
applications comprised by heterogeneous service 
components which may be scattered across multiple 
organisations and distant locations [7]. 

In this paper, recognising the importance of dis-
tributed object platforms in telecommunications ser-
vice engineering, the performance of DCOM and 
CORBA is examined with the intention to inform 
service designers and developers about the perform-
ance expectations that they should have when using 
these platforms, and thus assist them in a possible 
selection process between them. 
 
 
2  Comparing DCOM and CORBA 
Taking into account the basic characteristics of 
DCOM and CORBA, it is evident that they have 
similar architectures as both adopt a client / server 
based programming style and agree on the most fun-
damental aspects of their object models.  
 

Service Engineering 
Related Properties 

COM / DCOM CORBA 

Scalability MTS,  
Active Dir. Service Interface (NT 5.0) 

Naming service, 
Trader service 

Reliability MTS, MCS, MSMQ Transaction service 
Security Built-in: 

NT LAN Manager, MTS,  
MS Crypto API, Authenticode SDK 

Platform dependent: 
3 security levels (0, 1, 2) 

Manageability MMC Vendor specific tools, 
Transaction service 

Support for Web-based 
Telematic Services 

ActiveX, 
MS Active Server Page Technology 

JavaScript/Java 

Support for 
Internet/Extranets 

Two-factor authentication, 
Remote Data Service (RDS) 

Two-factor authentication, 
Secure Socket Layer (SSL) 

Support for Intranets Desktop tools, ActiveX, 
Active Data Objects, MSMQ 

Desktop tools (via a bridge), 
Event & Persistence service 

 
Table 1: Comparing DCOM and CORBA:  

Service engineering related properties. 
 

In order to derive more general conclusions, com-
pare the suitability and applicability of DCOM and 
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CORBA in the telecommunications field, and gain 
an insight on the capabilities of these platforms per-
taining their use in practical situations, a set of (tele-
communications) service engineering related proper-
ties are identified, and their support by DCOM and 
CORBA is summarised in Table 1.  

This table reveals that DCOM and CORBA differ 
in many respects and neither technology provides a 
complete solution for service engineering activities. 
However, both provide a solid infrastructure and 
there are specific scenarios in which each excels over 
the other. 
 
 
3  Examination of Performance 
The performance of distributed software, usually 
expressed in terms of execution time for a variety of 
operations / actions, is a critical factor for the 
development and provision of successful (user 
accepted and efficient) telematic services, especially 
when real-time functionality and / or multimedia 
characteristics are required. Therefore, a comparison 
between DCOM and CORBA has to address 
performance matters in order to be complete and 
offer a full insight of the practical value of the two 
most prominent distributed object platforms. 

Performance comparisons between DCOM and 
CORBA that are found in the literature use a simple 
example of distributed code (two objects residing in 
two different computers that communicate via a net-
work) and measure the time needed for the success-
ful completion of a single remote method invocation 
(when one of the objects calls a method of the other 
object and waits for the result) [5]. Although such an 
approach is valid, a performance comparison based 
not just on a single remote method invocation, but on 
a series of logically related remote method invoca-
tions (forming a usage scenario / pattern) can lead to 
more accurate, reliable and illustrative results, and 
can also be the stimulus for the deduction of a 
number of more general, albeit useful and of 
practical value, performance related conclusions. 

For this reason, in full agreement with the latter 
remark, an experiment involving multiple remote 
method invocations under both DCOM and CORBA 
was conducted. This experiment and the results 
obtained from it will be examined in the following 
paragraphs in an attempt to evaluate the performance 
of DCOM and CORBA under conditions which are 
common in telecommunications services engineered 
as distributed object applications. 

Before proceeding, it has to be stressed that the 
performance of object-oriented DPEs, like DCOM 
and CORBA, that provide high-level network 
programming interfaces is comparable (under certain 
circumstances) with the performance experienced 

when using low-level, procedure-oriented, non-
typesafe programming interfaces, such as BSD 
sockets [3]. Furthermore, the performance of both 
DCOM and CORBA keeps improving with the 
application of compiler optimisation techniques and 
the utilisation of light-weight communication 
protocols. Nevertheless, service developers seem to 
be willing to accept a certain performance penalty 
given all the benefits (and especially extensibility, 
maintainability, and reusability) they are gaining 
from using distributed object platforms [7]. 
 
 
3.1  The Experiment 
A simple distributed object application implemented 
under both DCOM and CORBA constitutes the basis 
of the experiment that was conducted. More specifi-
cally, a server object returns (after an appropriate 
request) fixed length strings (each 80 characters 
long) to a client object in two different ways: one 
string after the other as a result of separate 
consecutive method calls, or by gathering a number 
of strings and returning them all together as a result 
of a single method call. Equivalently, the client 
object, when interacting with the server object, can 
either make multiple method calls for small amounts 
of data (one string) or a single method call for a 
larger amount of data (several strings). The IDL 
description of the server object interface in DCOM, 
which is similar to that in CORBA, is: 
 
interface ITestServer : IUnknown 
{ HRESULT GetSingleString([in] LONG index, [out] BSTR* item); 
  HRESULT GetMultipleString([in] LONG index, 
    [in] LONG count, [out] LONG* got, [out] BSTR** item);  }; 

 
The first method (GetSingleString()) of this 

interface returns a single string, based on the ID of 
that string that is included in index, as all strings are 
kept in an array until the data is requested. The 
second method (GetMultipleString()) returns a 
number of strings (count) starting at index. It has to 
be noted that in order to obtain comparable results, 
care was taken to have both the DCOM and CORBA 
versions of the testing code execute on the same 
operating system platform (MS Windows NT 4.0) 
and on exactly the same hardware and network 
infrastructure. To achieve this uniformity, the 
CORBA implementation of the client and server 
objects used Iona’s Orbix ORB under MS Windows 
NT 4.0, and all the testing activity took place using 
two 350 MHz Pentium II computers with 64 MB of 
memory interconnected by a 10 Mbit/s Ethernet 
LAN. In the following paragraphs, important parts of 
the code of the client and server objects when 
implemented using DCOM will be presented and 
discussed. The CORBA implementation of this code 
retains the basic functionality and the only 
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differences are those imposed by the special nature 
and characteristics of CORBA. 

The server object has an embedded object of class 
Elements. When this object is created, it loads the 
strings in the specified file (elements.dat) and it 
makes each string 80 characters long by adding the 
appropriate number of dashes at the end of the string. 
Then, it keeps these strings in an array until the data 
is requested through the member function 
GetItem(). This function allocates system memory 
for the string at that index and returns it as a BSTR. 

The Elements class is declared in Elements.h: 
 
// Elements class 
class Elements { 
private: 
   LPCTSTR* m_elements; 
   LONG     m_size; 
public: 
   Elements(){}; 
   ~Elements(); 
   void Initialise(LPTSTR filename); 
   BSTR GetItem(LONG ID);  }; 
 

It is implemented in Elements.cpp: 
 

// Elements class 
#include “stdafx.h” 
#inlude <winnls.h> 
#include “elements.h” 
Elements::~Elements() 
{  LONG index; 
   for (index = 0; index < m_size; index++) 
    HeapFree(GetProcessHeap(), 0, (LPVOID)m_elements[index]); 
   HeapFree(GetProcessHeap(), 0, m_elements);  } 
void Elements::Initialise(LPTSTR filename) 
{  m_elements = NULL; 
   m_size = 0; 
   HANDLE hfile =  
   CreateFile(filename, GENERIC_READ, 0, NULL,  
              OPEN_EXISTING, 0, NULL); 
   if (INVALID_HANDLE_VALUE == hfile) return; 
   HANDLE hmapp = CreateFileMapping(hfile, NULL, 
                  PAGE_READONLY, 0, 0, NULL); 
   if (NULL == hmapp) 
   {  CloseHandle(hfile); return;  } 
   if (NULL == pstr) 
   {  CloseHandle(hmapp); CloseHandle(hfile); return;  } 
   m_size = 100; 
   m_elements = (LPCTSTR*)HeapAlloc(GetProcessHeap(), 0, 
                                   m_size * sizeof(LPCTSTR)); 
   if (NULL == m_elements) 
   {  UnmapViewOfFile(pstr); CloseHandle(hmapp); 
      CloseHandle(hfile); return;  } 
   LPTSTR pos = pstr; 
   LPTSTR next = pstr; 
   DWORD size = GetFileSize(hfile, NULL); 
   LONG count = 0; 
   TCHAR padding[] =_T(“--------------------------------------
------------------------------------------“); 
   while (next < pstr+size) 
   {  // Find end of string 
      while (*next != _T(‘\r’) && *next != _T(‘\n’)  
      && next < pstr + size) next++; 
      // End of string, copy data 
      LPTSTR temp = (LPTSTR)HeapAlloc(GetProcessHeap(),  
                                     0, sizeof(TCHAR) * 160); 
      lstrcpyn(temp, pos, next - pos + 1); 
      lstrcat(temp, padding); 
      temp[80] = _T(‘\0’); 
      m_elements[count] = (LPCTSTR)temp; 
      // Move to the next item 
      count++; next++; 
      if (_T(‘\n’) == *next) next++; 
      pos = next;  } 
   m_size = count; 
   UnmapViewOfFile(pstr); 
   CloseHandle(hmapp); 
   CloseHandle(hfile);  } 
BSTR Elements::GetItem(LONG ID) 
{  if (ID >= m_size) return NULL; 
   LPWSTR pstr; 
#ifndef UNICODE 
   pstr = (LPWSTR)HeapAlloc(GetProcessHeap(), 0, 

                            sizeof(WCHAR) * 160); 
   MultiByteToWideChar(CP_ACP, 0, m_elements[ID],  
                       -1, pstr, 160); 
#else 
   pstr = m_elements[ID - 1]; 
#endif 
   BSTR bstr = ::SysAllocString(pstr); 
#ifndef UNICODE 
   HeapFree(GetProcessHeap(), 0, pstr); 
#endif 
   return bstr;  } 
 

In the case of GetSingleString(), a BSTR is 
generated from the string and passed back to the 
client: 
 
HRESULT STDMETHODCALLTYPE CTestServer::GetSingleString(LONG 
index, BSTR *item) 
{  *item = m_list.GetItem(index); 
   IF (NULL == *item) 
   {  return S_FALSE;  } 
   else 
   {  return S_OK;  }  } 
 

In the case of GetMultipleString(), an array is 
created, the BSTR for each item is placed in the array, 
and then the array and the number of items obtained 
are returned: 
 
HRESULT STDMETHODCALLTYPE  
CTestServer::GetMultipleString(LONG index, 
                          LONG count, LONG* got, BSTR** item) 
{  HRESULT hr = S_OK; 
   // Temporary buffer 
   BSTR* buf = new BSTR[count]; 
   *got = count; 
   LONG current = index; 
   while (current<(index + count)) 
   {  buf[current - index] = m_list.GetItem(current); 
      if (NULL == buf[current - index]) 
      {  *got = current - index; hr = S_FALSE; break;  } 
      current++;  } 
   *item = (BSTR*)CoTaskMemAlloc(*got * sizeof(BSTR)); 
   for (current = 0; current < *got; current++) 
       (*item)[current] = buf[current]; 
   delete [] buf; 
   return hr; } 
 

The client object determines whether the single or 
multiple case is used, specifies the start value and the 
number of items to get, and calculates the average 
time required to make the call: 
 

void CTestClientDlg::OnGet() 
{  CListBox* pList = (CListBox*)GetDlgItem(IDC_RESULTS); 
   Assert(pList); pList->ResetContent(); 
   CWnd* pWnd = GetDlgItem(IDC_ELAPSE); 
   Assert(pWnd); UpdateData(); 
   if (NULL == m_pTestServer) 
   {  Message(_T(“The server interface pointer is NULL”)); 
      return;  } 
   if (m_nRadio == 0) 
   {  // Send multiple single requests 
      BSTR* array = new BSTR[m_lCount]; 
      LONG count; LONG loop; LONG total = 0; 
      for (loop = 0; loop < m_lRepeat; loop++) 
      {  DWORD starttime = GetTickCount(); 
         for (count = 0; count < m_lCount; count++) 
         {  HRESULT hr; 
            hr = m_pTestServer->GetSingleString(count + 
                                m_lStart, &array[count]); 
            if (FAILED(hr) || S_FALSE == hr) 
            {  Cstring str; 
               UpdateData(); 
               if (S_FALSE == hr) 
                  str.Format(“Cannot get item %ld”,  
                             count + mlStart); 
               else 
                  str.Format(“Cannot connect: 0x%08x”, hr);                 
               Message(str); 
               break;  }  } 
         DWORD endtime = GetTickCount(); 
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         total += endtime - starttime; 
         for (count = 0; count < m_lCount; count++) 
         {  if (array[count]) 
            {  Cstring str(array[count]); 
               ::SysFreeString(array[count]); 
               if (loop == 0) 
                  pList->AddString(str);  }  }  } 
      Cstring str; 
      str.Format(“Duration %.21f milliseconds”, 
                 total/double(m_lRepeat)); 
      pWnd->SetWindowText(str); 
      delete [] array;  } 
   else 
   {  // Send a single multiple request 
      BSTR* array; HRESULT hr; 
      LONG got; DWORD total = 0; LONG loop; 
      for (loop = 0; loop < m_lRepeat; lopp++) 
      {  DWORD starttime = GetTickCount(); 
         hr = m_pTestServer->GetMultipleString(m_lStart,  
                             m_lCount, &got, &array); 
         DWORD endtime = GetTickCount(); 
         total += endtime-starttime; 
         if (FAILED(hr)) 
         {  UpdateData(); Cstring str; 
            str.Format(“Cannot connect: 0x%08x”, hr); 
            Message(str); break;  } 
         LONG index; 
         for (index = 0; index < got; index++) 
         {  Cstring str(array[index]); 
            ::SysFreeString(array[index]); 
            if (loop == 0) pList->AddString(str);  } 
         CoTaskMemFree(array);  } 
      Cstring str; 
      str.Format(“Obtained %ld items”, got); 
      Message(str); 
      str.Format(“Duration %.2lf milliseconds”, 
                 total/double(m_lRepeat)); 
      pWnd->SetWindowText(str);  }  } 
 

This code examines whether this is a single or a 
multiple test. If it is a single test, the 
GetSingleString() method is called. Otherwise 
the GetMultipleString() method is called. 
GetSingleString() simply sends a single value 
and thus it is called for each of the required values 
(the number of strings and the first index are speci-
fied by the client). In order to increase the accuracy 
of the tests, the tests are repeated the number of 
times specified by the client. For the multiple case, 
the GetMultipleString() method is called on the 
server object just once. In both cases, the calls to the 
server object are timed and the average of the time to 
get the requested data is calculated. 
 
 
3.2  The Results 
During the experiment, two types of measurements 
were carried out, using both the DCOM and CORBA 
versions of the testing code. Initially, the client and 
the server objects were placed on the same machine, 
and the time (in ms) needed to transfer a number of 
strings from the server object to the client object, as 
a result of calling (on the server object), either 
GetSingleString() many times or GetMultiple 
String() once, was calculated for several different 
numbers of strings (Fig. 1). In this way, the 
performance of (the usually neglected) local method 
calls is examined under DCOM (in fact COM) and 
CORBA, recognising the fact that local object 
interactions are common even in large scale 
telematic services and thus they shouldn’t be ignored 

or underestimated. As can be seen in Fig. 1, local 
method calls are fast in both DCOM and CORBA, 
with DCOM being slightly faster than CORBA. 
Additionally, for both DCOM and CORBA, the 
single method call (GetMultipleString()) is about 
10 times faster than making multiple method calls 
(GetSingle String()) for a specific number of 
strings. 
 

 
Fig. 1: Examination of local method calls in DCOM 

and CORBA. 
 

The second type of measurements focused on 
remote method calls, which are the ones that affect 
mostly the performance of a telematic service. In this 
case, the time (in ms) needed to transfer a number of 
strings from the server object to the client object was 
calculated as in the first type of measurements, with 
the exception that the client and server objects were 
placed on two different machines connected via a 
network (Fig. 2). As would be expected, remote 
method calls take much longer than local method 
calls in both DCOM and CORBA, although the 
measurements have been taken on a very quiet 
network of just two machines running only the test 
software. From Fig. 2 is evident that CORBA is 
slightly faster than DCOM regarding remote object 
interactions, and that in both DCOM and CORBA, 
the multiple calls of GetSingleString() take about 
5 times longer than the GetMultipleString() call 
for a specific number of strings. 
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Fig. 2: Examination of remote method calls in 

DCOM and CORBA. 
 

Taking into account all the measurements and 
evaluating the whole experiment it is apparent that in 
both DCOM and CORBA remote method calls are 
slower than local method calls, and many single 
method calls are five to ten times slower than a 
single multiple method call. Thus, in both these 
platforms, performance can be improved by placing 
objects (whenever possible) on the same machine 
that they will be used from, and by designing the 
interface of remote objects so that the corresponding 
(remote) method calls, which are required to perform 
a specific task, are kept to a minimum. Finally, Fig. 1 
and 2 clearly illustrate that DCOM and CORBA 
have a comparable performance under the MS 
Windows operating system platform. Therefore, for 
this operating environment, a choice between 
DCOM and CORBA should not be based exclusively 
on performance considerations, but it should also 
take into account other more general and abstract / 
qualitative issues (see Section 2 and [1]). 

This conclusion is reinforced even more by the 
fact that CORBA performance depends significantly 
on the implementation of the ORB by a specific 
vendor, and thus differs between different products. 
A similar situation is also true for DCOM, as 
DCOM’s perfor-mance can be improved in certain 
circumstances by extending its remoting architecture 
which has built-in extensibility [4]. The way that this 
can be achieved is examined separately in the 
following section, because of the significant 
potential benefits it can offer to DCOM-based 
telecommunications services. 
 
 
 
 

4  DCOM Remoting Architecture 
Distributed object systems, such as DCOM and 
CORBA, provide the necessary infrastructure for 
supporting remote object activation and remote 
method invocation in a client-transparent way. The 
term remoting architecture refers to the entire infra-
structure that connects clients to server objects [2]. 

A distributed object system does not necessarily 
have to specify how the entire remoting architecture 
should be structured. It can treat it as a black box as 
far as user applications are concerned. This approach 
has the advantage of allowing vendors to use their 
best performance optimisation techniques. However, 
a disadvantage is that such architectures are usually 
difficult to extend [9]. 
 

 
 

Fig. 3: The DCOM remoting architecture and 
extensibility options. 

 

The DCOM remoting architecture can be seen in 
Fig. 3. Its main constituent parts are the following 
[2][4]: 
• Object proxies: They act as the client-side 

representatives of server objects and connect 
directly to the client. 

• Interface proxies: They perform client-side data 
marshaling and are aggregated into object proxies. 

• Client-side channel objects: They use Remote 
Procedure Calls (RPCs) to forward the marshaled 
calls. 

• Server-side endpoints: They receive RPC requests 
from clients. 

• Stub managers: They are located in the server and 
they dispatch calls to appropriate interface stubs. 

• Interface stubs: They perform server-side data 
marshaling and make actual calls on the 
appropriate server objects. 

• Standard marshaler: It marshals interface pointers 
into object references on the server side and 
unmarshals the object references on the client side.  
Usually, DCOM-based telecommunications serv-

ices use standard marshaling. However, some of 
them may need to customise the client-server 
connection in order to express the correct semantics 
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and improve performance. In these cases, the DCOM 
remoting architecture has to be extended. 

The extensibility provided by DCOM can be 
divided into three categories; namely, below, above, 
and within [2][4][9]. The first category extends 
DCOM at the RPC layer and below, as shown in Fig. 
3, in a way totally transparent to the standard 
remoting architecture. 

To achieve the other two types of extensibility, 
DCOM supports a custom marshaling mechanism 
which allows a server object to bypass the standard 
remoting architecture and construct a custom one, 
optimised for a particular situation, without requiring 
source code modifications to the former. A server 
object declares that it wants to implement custom 
marshaling by supporting the IMarshal interface. 

According to the second type of extensibility in 
DCOM, a handler layer can be insterted above the 
standard remoting architecture and below the user 
application (service components). This activity is 
often called semi-custom marshaling (or handler 
marshaling) because most of the tasks are eventually 
delegated to the standard remoting architecture, as 
shown in Fig. 3. As part of the marshaling / 
unmarshaling process, a custom proxy and a custom 
stub are inserted to allow additional processing of 
each method invocation. 

The third type of extensibility in DCOM is the 
most general and the most promising one. According 
to it, as DCOM’s remoting architecture is con-
structed at run time by instantiating and connecting 
various components, it should be possible for a 
custom architecture to reuse some of the binary 
components from the standard one and supply only 
the necessary custom objects. The construction of 
such a custom architecture is hard in current DCOM 
architecture, but it can be facilitated significantly by 
specialised architectures developed for this purpose 
[9]. 

CORBA does not specify a standard remoting 
architecture. Therefore, incorporating stronger 
system properties into CORBA-based telecommuni-
cations services and improving their semantics and 
performance is usually not done by exploiting the 
extensibility of the remoting architecture. Further-
more, while some CORBA-based systems allow the 
replacement of the marshaling code for a given 
interface (sometimes called smart proxies), DCOM is 
unique in that the remoting behaviour is polymorphi-
cally bound at runtime on an object-by-object basis, 
as two references of identical type may be using 
custom or standard marshaling independently. This 
allows object implementors to safely evolve their 
remoting implementation based on performance 
needs without rebuilding client applications. 
 

5  Conclusions 
The liberalisation of telecommunications markets has 
exposed service providers to a high level of 
competition. This competition is forcing them to 
reduce costs, improve customer service, and rapidly 
introduce new services. One key way in which these 
pressures can be addressed is through the increased 
exploitation of distributed object platforms. 

In this paper, the performance of DCOM and 
CORBA, which currently are the two most important 
object-oriented DPEs, was examined focusing on 
their ability to support object interactions commonly 
used in new telecommunications services. The 
experiment that was conducted revealed that DCOM 
and CORBA have a comparable performance, 
although DCOM appears to be more flexible and 
with a significant potential for improved 
performance due to its extensible and customisable 
remoting architecture. However, there is no doubt 
that both DCOM and CORBA are important for the 
realisation of telecommunications services in today’s 
heterogeneous information networking environment. 
Therefore, their efficient interoperation via a 
standardised single two-way gateway specification (a 
bridge) between them is expected to rapidly gain 
importance [8]. 
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