
 1

Engineering Open Interoperable Quality Driven Web Services

Dr. DIONISIS X. ADAMOPOULOS
Department of Technology Education & Digital Systems

University of Piraeus
GREECE

Abstract: - Web services are emerging technologies that can be considered as the result of the continuous
improvement of Internet services due to the tremendous increase in demand that is being placed on them. They
are rapidly evolving and are expected to change the paradigms of both software development and use, by
promoting software reusability over the Internet, by facilitating the wrapping of underlying computing models
with XML, and by providing diverse and sophisticated functionality fast and flexibly in the form of composite
service offerings. In this paper, the different facets of Web services are identified and a flexible approach to
engineering complex Web services is adopted in the form of a proposed framework for the development of
Web services. After the examination of its main constituent parts, it is argued that its full potential and that of
Web service engineering in general, is realized through the gradual formation of a rich service grid offering
value-added supporting functionality and therefore the main desirable properties of such a service grid are
highlighted. Finally, the paper outlines a validation approach for the proposed framework and assembles
important pointers for future work and concluding remarks.

Key-Words: - Web services, Web service engineering, Internet middleware, service grids

1 Introduction
Web-enabled service-oriented computing is becom-
ing the prominent paradigm for distributed comput-
ing and e-commerce, creating significant opportuni-
ties for a variety of providers to develop value-added
services by specifying new Web services or by com-
bining already existing ones. These services are self-
contained, Web influenced programming entities
capable not only of performing business activities on
their own, but also possessing the ability to engage
other Web services in order to complete higher-order
business transactions. Therefore, Web services can
be considered as a special category of telematic ser-
vices (new telecommunications services), that al-
though they have several unique characteristics, they
remain geographically distributed entities (actually
an encapsulation of a number of cooperating entities
distributed over a geographical environment) pro-
viding a number of people (users, subscribers) a pre-
defined, carefully selected, set of capabilities / fa-
cilities regarding the integrated coverage of a (possi-
bly) wide range of information and communication
needs, utilising the resources of (existing and future)
telecommunication networks [1].

This paper attempts to determine the boundaries
of Web service engineering and, considering the
needs of companies that deploy Web services to sup-
port increasingly sophisticated business processes,
proposes a framework for the development of Web
services and examines its main constituent parts, ad-
dressing important issues for the creation and provi-
sion of a new generation of functionally rich, adapt-
able, web-centric, composite applications. Further-

more, it introduces the concept of service grids as the
necessary infrastructure that will enable Web ser-
vices to transform the Web from a collection of in-
formation into a distributed computational entity,
and identifies open matters and current technical
challenges for the Web services community in asso-
ciation with the proposed framework.

2 Web Service Engineering
A Web service is programmable application logic ac-
cessible using standard Internet protocols, fulfilling a
specific task or a set of tasks and representing a dis-
crete unit of business or system functionality, that
can be combined with other Web services to main-
tain business transactions or workflows [3][7]. By
exploiting Web services an organization is able to
provide ("expose") any business function to any
other entity, such as another business function, an
organization, a particular community, as well as end
users.

Web services are self-contained, self-describing,
modular software entities that can be published, lo-
cated and invoked across the Web. Each discrete
Web service can be deployed on and accessed from
any node on the Internet, because once a Web ser-
vice is deployed, other applications (and other Web
services) can discover and invoke the deployed ser-
vice. Therefore, multiple Web services can be com-
bined or assembled to form new service configura-
tions and deliver more valuable and sophisticated
functionality supporting diversified business objec-
tives.

 2

As a new domain or scientific discipline at the
boundaries of software engineering and telecommu-
nications, Web service engineering addresses the
technologies and engineering processes required to
define, design, implement, test, verify, validate, de-
ploy, combine, maintain, and manage Web services
that meet user needs in the current or future net-
works. Its main objective is to ensure the introduc-
tion of new and enhanced Web services and their
management, in a fast and efficient manner. It relies
heavily on open distributed object-oriented process-
ing and Internet technology, and ambitiously prom-
ises to significantly facilitate the offering of a wide
variety of highly sophisticated and personalised ser-
vices over the widest possible coverage area.

Finally, it has to be stressed that Web services rep-
resent the convergence between Service-Oriented
Architectures (SOAs) and the Web. SOAs (as the
one proposed by the Telecommunications Informa-
tion Networking Architecture-Consortium, TINA-C)
have evolved over the last 10 years to support high
performance, scalability, reliability and availability
[1]. To achieve these properties, applications are de-
signed as services, that can be accessed through a
programmable interface and run on a cluster of cen-
tralized application servers. In the past, clients ac-
cessed these services using a tightly coupled, distrib-
uted object protocol, such as Microsoft’s DCOM,
OMG’s CORBA or Sun’s Java RMI. While these
protocols are very effective for building a specific
application, they limit the flexibility of the system.
Furthermore, each of the protocols is constrained by
dependencies on vendor implementations, platforms,
languages or data encoding schemes that severely
limit interoperability and none of them operates ef-
fectively over the Web [2]. Web services inherit all
the best features of the SOAs and all the best aspects
of component-based development in general and
combine them with the Web. Like components, Web
services represent functionality that can be easily
reused without knowing how the service is imple-
mented. However, the Web supports universal com-
munication using loosely coupled connections and
Web protocols are completely vendor-, platform-,
and language- independent.

3 A Framework for the
 Development of Web Services
Because of the inherent complexity of Web
technologies and the recent diversification of the
telecommunications environment, Web service engi-
neering activities should satisfy a number of re-
quirements, in order to maximise their usefulness,
fulfil the emerging increased expectations regarding
their value and impact, and lead eventually to a Web
populated by a variety of service objects. The most

important requirements that Web service engineering
activities should support during their desired evolu-
tion process are the following [1][3][4][5]:
• The efficient and effective development of Web

services by guiding successfully service developers
during the entire Web service creation process.

• The successful application in a Web services
context (through the appropriate adaptation when
necessary) of carefully selected concepts, models,
techniques, design patterns and practices that are
developed, tested and (extensively) applied during
the creation of conventional telecommunications
services.

• The reduction of complexity and the increase of
efficiency during the design and implementation of
Web services by hiding from the service develop-
ers commonly encountered implementation details.

• The efficient automation of the Web service crea-
tion process, without semantic loss, with the use of
appropriate, carefully designed and tested, cus-
tomisable, and user-friendly software tools.

• The development of a rich variety of Web services,
which can efficiently support a wide range of
communication, information, business, education,
entertainment and cooperation needs.

• The representation, processing, management, and
transmission (possibly in an integrated manner) of
all the basic information types.

• The adoption of precise service semantics, because
in an open telecommunications market, it is im-
portant for reasons of service interoperability and
for maximising customer satisfaction to specify
Web services in a clear and unambiguous way by
using concepts that their semantic content can be
accurately defined.

• Reusability at different abstraction levels (e.g.
reusable service requirements, service specifica-
tions, service components), with the intention to
promote rapid Web service design and deploy-
ment.

• The use of a variety of document types and their
population with appropriate values so that they are
semantically coherent and are interpreted correctly
by the service requesters and providers.

• The flexible management of Web services.
• The interoperability of Web services in a multi-

provider (open) telecommunications environment
(with multiple domains of management and owner-
ship of services) by facilitating and promoting
Web service composition.

• Openness to all types of potential end-users of a
Web service considering all the possibly interested
people (e.g. mobile users, residential users, etc.).

• Openness to change of Web service software and
hardware (computer and network infrastructure),
because as technology advances, or as prices
change, or as purchasing policies and needs dic-

 3

tate, different hardware should be able to be used
without requiring new investment in the accompa-
nying software, and vice versa.

• The accommodation of legacy telecommunications
services and systems as they represent significant
investments that should be protected.

• Security in each message exchange between a ser-
vice requester and a service provider, which should
be private and unmodified, as well as non-reputa-
ble.

• The accommodation of relevant standards (if
necessary).
Current Web service technology scores rather low

compared to the above-mentioned requirements.
Therefore, in an attempt to revitalize Web service
engineering and enable it for the crucial role that is
anticipated to have in the new emerging telecommu-
nications environment, the Web service engineering
framework of Fig. 1 is proposed with the objective to
provide a rich conceptual model for the development
and the description of Web services bringing this
technology to its full potential.

Web Service
Architecture

(WSA)

Web Service
Development
Methodology

Web Service
Support

Environment

Web
Service

The proposed framework

Business
Ecology

Web
service

engineering
principles

Web Service Execution Environment

Web Services Platforms (.NET, J2EE)
Core Technologies (XML, SOAP, WSDL, UDDI)

ASPs

MHPs

ISPs

network
operators

ISVs

BSPs

Transport (SOAP)

Description (WSDL)

Discovery (UDDI)

Fig. 1: The proposed Web service engineering

 framework.
As can be seen from Fig. 1 the proposed frame-

work is placed inside a composite organisational
context (a “business ecology”), in order to signify
that Web service engineering activities are normally
performed by a variety of entities / business forma-
tions. Although in practice many of the companies
operating in this sector / area blend various functions
into a composite offering and adopt many different
roles, the major players in this new always-on Web
services landscape are Application Service Providers
(ASPs), Managed Hosting Providers (MHPs), Inter-
net Service Providers (ISPs), network operators, In-
dependent Software Vendors (ISVs) and Business
Service Providers (BSPs) [6]. Therefore, the pro-
posed framework is influenced by their business ob-
jectives, their general telecommunications and IT
strategic orientation, their knowledge, their problem
solving attitude and their experience.

The main constituent parts of the proposed Web
service engineering framework, which are depicted
in Fig. 1, are:

• A Web service development methodology: It is a
methodology that guides service developers during
the entire process of Web service creation.

• A Web service support environment: It is an envi-
ronment aiming to facilitate, both the development
of Web services (in cooperation with the Web ser-
vice development methodology) and their execu-
tion under real conditions. It consists mainly of:

− Web service engineering principles: These are
concepts, guidelines, design patterns, practices
and (in general) mental constructs that are ap-
plicable to Web service engineering activities.

− A Web service architecture: It contains in a
structured manner all necessary details for the
information and computational modelling of
Web services.

− A Web service execution environment: It
encompasses the necessary computing and
network infrastructure and the appropriate an-
cillary software (e.g. operating systems, data-
base management systems, etc.), which is
needed for and during the execution of a Web
service. Its most important part is the Web
platform, which abstracts over all the other
parts and reduces greatly the effort needed for
the implementation of a Web service. Further-
more, the Web platform is accompanied by a
collection of software tools (together with a
reuse infrastructure) that are used according to
the Web service development methodology
with the aim to assist the service developer(s)
when applying the methodology.

WSDL
Description

(service
contract)

Client Service

Service
Consumer

Service
Provider

SOAP

UDDI Inquiry
find_xxx

UDDI Publish
save_xxx

Service
Broker

Find Register

Bind

XML

Fig. 2: Conceptual roles and operations in a

 Web Services Architecture (WSA).
A Web services environment conforms to the con-

ceptual roles and operations that characterize every
SOA. The three basic roles are the service provider,
the service consumer and the service broker (see Fig.
2). A service provider offers the service and pub-
lishes the contract that describes its interface. It then
registers the service with a service broker. A service
consumer queries the service broker according to its
specific needs and finds a compatible service. Then,
the service broker informs the service consumer on
where to find the service and its service contract.
Finally, the service consumer uses the contract to
bind the client to the service. In order for the three
conceptual roles to accomplish the related conceptual

 4

operations, a SOA system must supply / specify
three core functional architecture components;
namely transport, description, and discovery [7].

 DCOM CORBA Java RMI Web Services
Invocation
Mechanism DCE RPC CORBA

RMI Java RMI JAX-RPC,
.NET, etc.

Data Format NDR CDR Serialised Java XML
Wire Protocol PDU GIOP Stream SOAP
Transfer
Protocol RPC CO IIOP JRMP HTTP,

SMTP, etc.
Interface
Description

MIDL /
DCE IDL

CORBA
IDL Java Interface WSDL

Discovery
Mechanism CDS COS

naming Java Registry UDDI

Table 1: A comparison of SOA middleware
 and Web services.

As can be seen in Table I, the distributed object
platforms (middleware) that form the basis of SOAs
(DCOM, CORBA or Java RMI) define their own
vertical set of formats and protocols to implement
the core SOA functions. This approach ensures con-
sistency among applications that share the same
middleware, but prevents interoperability with appli-
cations that use different middleware. It also requires
that every service producer and service consumer
that engages in a conversation must have the appro-
priate middleware installed and loaded on its com-
puting infrastructure.

On the other hand Web services (Internet middle-
ware), unlike traditional SOA systems, do not re-
quire an entirely new set of protocols. The most ba-
sic Web services protocol is XML (an industry stan-
dard), which is used as the message data format and
is also used as the foundation of all other Web ser-
vices protocols. Web services use XML to describe
their interfaces and to encode their messages. How-
ever, XML by itself does not ensure effortless com-
munication. The applications need standard formats
and protocols that allow them to properly interpret
the XML. Hence, the following XML-based tech-
nologies have emerged as the de facto standards for
Web services: Simple Object Access Protocol
(SOAP), Web Services Description Language
(WSDL) and Universal Description, Discovery and
Integration (UDDI).

These core Web service technologies define the
transport, description and discovery mechanisms
respectively in the way depicted in Table I, and have
a close relationship with a strong semantic underpin-
ning. As most Web service configurations suggest,
the three core functional architecture components
(transport, description, and discovery) are imple-
mented using SOAP, WSDL, and UDDI, respec-
tively, forming the Web Services Architecture
(WSA) that can be seen in Fig. 2. A UDDI registry
has the role of a service broker. The register and find
operations are implemented using the UDDI Inquiry
and UDDI Publish APIs. A WSDL document de-
scribes the service contract and is used to bind the
client to the service. All transport functions are per-
formed using SOAP.

The Web Services Architecture (WSA) provides
the necessary means to create Web services for the
coverage of an infinite variety of needs and to dy-
namically combine them to satisfy more specialized
business requirements at any point in time, by knit-
ting together micro-services (individual process
components) into a broader application entity offer-
ing enriched functionality. However, such Web ser-
vice creation activities can be extremely risky and
difficult as Web services can be relatively simple,
like the delivery of a currency converter or stock
quotes to a cell phone, but also very complex, like a
payment processing service where millions of euros
are being transferred in individual transactions from
one account to another.

Furthermore, all Web services are currently com-
posed in a rather ad hoc and opportunistic manner by
simply combining their operations and input and
output messages. If the requirements change or need
to be adjusted, then the composition will have to be
respecified and recreated by possible interlinking
additional or modified service interfaces. This ap-
proach leads to a proliferation of badly specified ser-
vice operations and results in unmanageable and
cluttered solutions. In this case, the needs of service
developers that want to reuse the design and imple-
mentation of existing Web services only by exten-
sion or restriction, without developing them from
scratch, cannot be satisfied.

An equally important problematic situation arises
also from the fact that unlike a traditional telecom-
munications enterprise network, many different pro-
viders share the multi-layered network and software
infrastructure of Web services. Therefore, creating
an integrated, end-to-end application delivery infra-
structure incorporated into a Web service requires
close cooperation between all the interconnected,
autonomous participants (providers and enterprises).

It is evident that as Web services become more so-
phisticated and more global in reach and capacity, it
becomes increasingly important to provide additional
assistance to service developers in order to ensure
the effective encounter of the above mentioned
problems and the efficient support of commercial-
grade application functionality by Web services in an
incremental manner, with little risk and at low cost.
Recognising these needs, the Web service develop-
ment methodology of Fig. 3 is proposed. This meth-
odology “covers” in a systematic and structured
manner the entire Web service creation process
through a requirements capture and analysis phase, a
Web service analysis phase, a Web service design
phase, a Web service implementation phase, and a
Web service validation and testing phase. It recog-
nises the inefficiency of current general-purpose
software engineering methodologies to address suc-
cessfully Web service engineering matters and pro-

 5

poses a novel Web service creation process based on
fundamental object-oriented analysis and design
concepts and on important results of service creation
research regarding the development of telematic ser-
vices upon distributed object platforms utilising
SOAs. The novel character of the proposed method-
ology is reinforced by the adoption of an incremental
and iterative use case driven approach, by the con-
sideration of the special needs imposed by the Web
Services Architecture, by the careful incorporation of
the Unified Modelling Language (UML) notation
and the XML technology throughout the service
creation process, by the exploitation of specially
constructed design patterns, and by the promotion of
reusability and dynamic Web service compositions.

Requirements
Capture and

Analysis

Web Service
Development

Cycle 1

Requirements
Refinement

Web Service
Formation

Web Service
Optimisation

Web Service
Development

Cycle 2

Web Service
Development

Cycle n

Web Service
Analysis

Web Service
Design

Web Service
Implementation

Web Service
Validation

and Testing

- Define Web Service Development Plan
- Define Web Service Requirements
- Define Use Cases (high level & essential)
- Define Draft Conceptual Model
- Consider the Application of Rapid Prototyping
- Define Draft Architecture Layers

- Define Essential Use Cases
-

 Define Web Service Operation Contracts
- Define XML Schemas
- Define Web Service State Diagrams

Define Web Service Conceptual Models
- Define Web Service Sequence Diagrams
-

- Define Real Use Cases
- Define User Interface Aspects
- Define Web Service Interaction Diagrams
- Refine XMLSchemas
- Define Web Service Design Class Diagrams
- Define Web Service Composition Scenarios

- Implement Service Scripts & HTML Code
- Implement Service Classes & Interfaces
- Implement Graphical User Interface
- Consider Interworking / Interoperability Matters
- Implement Database Schema
- Integrate Implementation Work

- Apply Test Scemes
- Check Web Service Composition Matters
- Consider Artifact Synchronisation

Fig. 3: Outline of the proposed Web service
 development methodology.

Unlike other SOA systems, Internet middleware
does not define a specific invocation mechanism. It
simply defines the communication protocols (XML,
SOAP, etc). The specifics of how Web services in-
teract with SOAP and WSDL have been left as an
exercise to the service developer’s community. Since
the WSA is based on standard XML, Web services
can be implemented by using the pervasive XML
processing techniques that are supported by a variety
of software tools, together with ad hoc invocation
implementation patterns. However, efficiency can be
greatly improved by using specialized Web services
platforms, which provide a ready-made foundation
for building and deploying Web services, based on a
set of carefully selected invocation mechanisms. The
advantage of using a Web services platform is that
developers don’t need to be concerned with con-
structing or interpreting SOAP messages.

The two most prominent Web services platforms
currently are Microsoft’s .NET and Sun’s J2EE.
More specifically, Microsoft has defined a set of
standard programming interfaces and class libraries
for the Visual Studio .NET languages within the
.NET framework, and the Microsoft SOAP Toolkit
provides support for COM-based applications writ-
ten in Visual Basic and Visual C++. On the other
hand, the Java Community Process’ (JCP) has re-
cently defined a set of standard programming inter-

faces for Java Web services, as part of the J2EE
specification. It is evident that due to the increased
capabilities of these platforms and their continual
improvement the selection process is a challenging
task [8].

4 The Importance of Service Grids
A distributed Web services infrastructure will be re-
quired before Web services technology can be
broadly deployed to support mission critical applica-
tions within and across enterprises. The difference
between traditional Web content and Web services
originates from the addition of process – the se-
quence of events that need to happen in order to pro-
duce a result. The fact that the users / participants of
a Web service are distributed and need to complete
certain processes adds important new operating re-
quirements, such as consistency, authenticity, timeli-
ness, integrity, and persistence [6].

The distributed Web services infrastructure must
support these requirements. Service grids constitute a
key component of this infrastructure, especially as its
scope expands beyond the boundaries of the enter-
prise to encompass a broad range of business part-
ners. Service grids provide a set of enabling utilities
and ancillary services to support more robust con-
nections between providers and users of Web ser-
vices. This enabling functionality offered by service
grids is distinct from application functionality that is
directly useful to end-users. It focuses on supporting
the application logic with functionality like security,
routing of messages across Web services or data
transformation so that one Web service can access
data from another Web service. It can be considered
as the equivalent of the supporting functionality pro-
vided by object-oriented middleware in SOAs, with
the difference that in this case it is delivered as a set
of managed services, rather than installed in the
computing infrastructure communicating at either
end of the connection [5].

The full value of the proposed framework for the
development of Web services is realized when it is
used in combination with a carefully created service
grid in an integrated manner. This will also require
the enhancement of the proposed methodology in
order to take into account the availability of the
managed services offered by the service grid, espe-
cially during the specification of non-functional re-
quirements.

Although service grids are still at a very early
stage of development, there is no doubt that the
adoption of Web services technology will be signifi-
cantly affected by the pace and scope of service grid
deployments. Nevertheless, significant initiatives are
already taking place leading to the emergence of
early generations of service grids and specialized
service grid utilities.

 6

5 Conclusions and Future Work
Web service engineering provide a sound basis for
developing and deploying interoperable Web ser-
vices, allowing the gradual transformation of the
Internet to a global common information networking
platform where organizations and individuals com-
municate with each other to carry out various com-
mercial activities and to provide value-added func-
tionality. With the emergence of Web services the
Internet has ceased to be solely a content transmis-
sion network. It has become a computing execution
network, processing commercial transactions and
business applications.

However, many of the standards required for Web
services are not yet fully defined. The SOAP, WSDL
and UDDI specifications that underpin current Web
services technology form a de facto standard infra-
structure with little endorsement by official standards
organizations. For this reason, the existing specifica-
tions contain a number of ambiguities and inconsis-
tencies, and address only basic Web services com-
munications. Two standards groups are currently
working on the definition of official Web services
standards: The World Wide Web Consortium (W3C)
and the Organisation for the Advancement of Struc-
tured Information Standards (OASIS). W3C focuses
on core infrastructure specifications and OASIS fo-
cuses on higher-level functionality.

In general, Web services computing poses signifi-
cant theoretical and engineering challenges as devel-
opers determine how to leverage emerging technolo-
gies to automate semantically rich application do-
mains and to create software entities with an open
interoperable character, based on cross-organisa-
tional, heterogeneous software components. The
proposed framework for the development of Web
services aims to address this movement towards
Web-enabled service-oriented computing, where ap-
plication logic is offered as a set of services both
within and across enterprises. Regarding this frame-
work, it is currently attempted to examine it and
specify it in greater detail, focusing especially on the
Web service development methodology, as it pre-
sents increased research interest and practical value.
Furthermore, the validation and evaluation of the
proposed methodology is considered by applying it
to the development (from requirements elicitation up
to actual implementation) of a complex representa-
tive Web service (eXtended e-Learning Interactive
eXperience using Internet Services, eXeLIXIS). This
Web service enables students to specify their learn-
ing objectives and learning preferences, attend spe-
cially designed e-classes that satisfy their needs, par-
ticipate in training multiplayer games that enhance
their understanding and test their knowledge, getting
feedback in order to amend or enrich their learning
objectives. Two alternative implementations of this

Web service are being constructed (using Micro-
soft’s .NET and Sun’s J2EE) and special emphasis is
placed on Web service composition matters, as the
training material can originate by a variety of pro-
viders, and on the incorporation of session tracking,
as the maintenance of state information for the stu-
dents by the Web service improves the overall per-
formance, simplifies program development and pro-
vides for a more intuitive user interface. This valida-
tion attempt aims to provide tangible evidence about
the correctness, the efficiency and the true practical
value of the proposed methodology. All these efforts
treat the proposed framework as a conceptual “um-
brella” for Web service engineering activities and
gradually transform it to a more precise and concrete
construct.

Web services constitute undoubtfully a promising
technology that will increasingly assist the integra-
tion of heterogeneous islands of application logic
(objects on the Web) to homogeneous component-
based solutions (a web of objects), especially when
supported by robust service grids. However, devel-
opers should keep in mind that Web services are still
a fast moving target and an immature technology.
Existing object-oriented middleware such as
COM+/.NET, CORBA, and EJB/RMI may be still
necessary to implement sophisticated back-end ser-
vices, but Web services claim a prominent role when
these functionality islands must be connected to fully
operational networked systems.

References:
[1] Adamopoulos, D.X., Pavlou, G., Papandreou, C.A.,

“Advanced Service Creation Using Distributed Object
Technology”, IEEE Communications Magazine, Vol.
40, No. 3, March 2002, pp. 146-154.

[2] Chung, J.-Y., Lin, K.-J., Mathieu, R.G., “Web Ser-
vices Computing: Advancing Software Interoperabil-
ity”, IEEE Computer, Vol. 36, No. 10, October 2003,
pp. 35-37.

[3] Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weer-
awarana, S., “The Next Step in Web Services”, Com-
munications of the ACM, Vol. 46, No. 10, October
2003, pp. 29-33.

[4] Fensel, D., Bussler, C., “The Web Service Modeling
Framework WSMF”, Electronic Commerce: Research
and Applications, Vol. 1, 2002, pp. 113-137.

[5] Hagel, J., Brown, J.S., “Service Grids: The Missing
Link in Web Services”, White Paper, 2002.

[6] Wainewright, P., “Web Services Infrastructure: The
Global Utility for Real-Time Business”, White Paper,
2002.

[7] Web Services Architecture Working Group, “Web
Services Architecture Requirements”, W3C Working
Draft, Aug. 19, 2002.

[8] Williams, J., “The Web Services Debate: J2EE vs.
.NET”, Communications of the ACM, Vol. 46, No. 6,
June 2003, pp. 59-63.

