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Abstract: In this study a composite cylindrical shell is loaded under a steady-state axisymmetric voltage and analyzed using a semi-analytical finite element method. An attempt has been made to define a critical buckling voltage for a single layer cylindrical composite shell under a clamped-clamped boundary condition at different fiber orientation and length to radius ratios.The voltage to cause instability is derived from fundamental equations of the piezoelectric constitutive relations. Critical buckling voltage applied to a cylindrical composite shell can be determined by employing a piezoelectric actuator. 
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1   Introduction

Over the last few decades composite materials have been replacing conventional materials in many key industries where various structural components have shell like configuration. Most of these may have features close to that of a circular cylinder subjected to different types of loading. Buckling analysis of composite shells has been a chalenging research goal where various techniques like finite element are employed as a very important tool.


The major objective in finite element methods is to find the solution of a complicated problem by solving a simplified model representing the actual case allowing a more accurate approximate solution to be achieved. One of the important applications of finite element method, specially in engineering, is solving eigenvalue problems. In eigenvalue problems used in this research time doesn't seem to be an explicit parameter. These problems are taken as the expansion of equilibrium equations in which a stable state situation and critical values of some certain parameters should be determined.

Zienkiewicz [1] has complied a general analysis of different finite element problems. Ronald and Gibson [2] have studied numerical behavior of composite materials subjected to mechanical and thermal loading. Tzou [3] has analysed controller equations of piezoelectric shells. Piefort [4] has analysed a finit element method on piezoelectric structures. Rajagopalan [5] has modelled buckling of a cylindrical shell by finite element method, under mechanical loading. Chen and Shen [6] have reported their analytical study to explain the exact mechanical and electric behavior of a laminated piezothermoelastic circular cylindrical shell subjected to axisymmetric thermal or mechanical loading. The linear thermal buckling behavior of laminated composite shell under thermal load and the effect of various other parameters on the critical buckling temperature was studied by Thangaratnam [7]. Hoff [8] presented a detailed study of the thermal buckling of thin circular cylindrical shells and columns under three categories, namely, small uniform temperature raise, large temperature variation together with thermal expansion of structural elements, and time effects of creep. Abir and Nardo [9] consider the problem of thermal buckling in thin circular cylindrical shells where there exits temperature gradients in the circumferential direction. Tauchert [10] has represented a comprehensive review on the status of piezothermoelasticity in particular reference to smart composite structures. 

In this research a piezoelectric constutitive equation together with Kirechhoff principle were employed to predict the critical buckling load necessary to affect the instability of a composite shell. Theoretically axisymmetric voltage has been applied to a layer of Graphite/Epoxy composite shell covered with two layers of piezoelectric material PZT-5A over the inner and outer surfaces of the shell. A fist order linear element in the form of linear-linear- cubic has been utilized to analyze the buckling behaviour of the shell. A reasonable convergance has been achieved in circumferential mode of buckling leading to the critical voltage to cause instability in the structure.

2   The Physical Model

Fig. 1 shows a schematic diagram of a composite cylindrical shell of lenght l, mid-surface radius r,and thickness h. The outer and inner surface of the shell are suitably bonded with piezoceramic material. In order to carry out a static and buckling analysis, both of the piezoelectric layers are considered as actuators. Due to the nature of piezoelectricity, actuator layers may be expanded or contracted by  positive or negative voltage, respectively. The system operates under steady state voltage, where any variation through the continua is axisymmetric. Tzou and Ye [11] have expressed fundamental equations of piezoeletric as follows:
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Fig. 1. Piezoelectric cylindrical shell continum and steady state voltage source.
where 
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 is the stress tensor, cijkl is the elastic coefficients at the constant electric field and temperature, 
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 is the initial strain vector, eijk is the piezoelectric coefficients at a constant temperature, Ek is the electric field. Di is the electric displacement component, 
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is the dielectric coefficient at the constant elastic stress and temperature.

3   Stress - Strain Relations

In Kirechhoff deformation theory, shear strains 

[image: image9.wmf]sz

g

,
[image: image10.wmf]z

q

g

are negligilbe and also the tangential displacements u , v are linear functions of the z(radial) coordinate [2].
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where u0 , v0 are the displacements of the middle surface along the s(axial) , ((circumferential) directions respectively. the transverse displacement at the middle surface, w0(s,() is the same as the transvers displacement of any point having the same s and ( coordinates. 
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are the relations of the nomal to the mid-surface along s and ( axes respectively. Thus we find for strain-displacement relations that:
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where the strains on the middle surface are
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and ks , k( and ks( are curvatures of the middle surface. 

By using stress-strain and strain-displacement relations in two dimentional coordinate we have:
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Since the force and the moment per unit length are given by:
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we find the relation between force and moment in terms of mid-surface strain:
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and since the generalized stress vector can be expressed as:
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the elements of the stiffness matrix, [D], are computed as follows:
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is the transformed elasticity matrix in global coordinates.
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4   Problem Formulation

To analyse the equations in finite element method, an element with 8 degrees of freedom has been employed. Fig.2 shows a linear first order element in which each node has four degrees of freedom.
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Fig.2.The linear-linear-cubic cylindrical shell element


The displacement field associated with the element is [5]:
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The potential and shape functions are defined as:
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The generalized displacement field is assumed to depend on the circumferential direction, hence these quantities can be expanded by a fourier series in the ( direction and can be represented by the following shape functions:
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 is the nondimensional meridional coordinate given by:

5   The Element Stiffness Matrix

Due to orthogonality principle and virtual work approach, the stiffness matrix for each circumferential harmonic is given by:
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where [D] is given by (9) and [B*] is defined as 
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6   Geometric Stiffness Matrix

The geometrical stiffness matrix which depends on the internal forces in the element is also known as the initial stress-stiffness matrix [12]. The nonlinear generalized strains will consist of nonlinear displacement terms for the membrane strains only.Thus:
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The expression for the geometric stiffness matrix can now be written as:
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7   Critical Buckling Voltage

Under piezoelectric voltage the expression for the total potential of a cylindrical shell is as follows:
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Steady state electric field is assumed to be dependent on the circumferential direction, and using Fourier series, the electric field in the circumferential direction is:
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Minimization of (, the displacement vector {de} by the effect of piezo actuator voltage is given by the following standard equation:
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 [K] is the structural element stiffness matrix same as Eq (14). The piezo force evaluation envolves:
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where 
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is the voltage stress coefficients computed for the laminate as:
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    (23) 
[QQ] represents the mechanical properties of piezoelectric material and {d} is the strain constant.Using the element displacement vector from Eq. (21), the stress and moment resultants are evaluated as follows:
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where the electric field E is expressed in terms of the actuator voltage:
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Va is the actuator voltage and ta is the thickness of the piezoeletric actuator layer.

By substituting stress resultants from the Eq. (24) in the geometric stiffness matrix and then in the buckling equation explained in the following section ,the critical buckling voltage will be found.

8   Buckling Analysis

Using the following classical equation, we will have the critical buckling voltage for a composite shell:
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In the above equation k is the structural stiffness matrix, Kg is the geometric stiffness matrix and λ is the bucking load. Solving the Eq. (26) we will consider the lowest eigenvalue as the critical buckling load.In order to analysis the clamped-clamped cylindrical shell, the boundry conditions are considered as : 
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9 Numerical Simulation - Results and Discussion

In the study of bucking phenomenon, the node displacement along the length of cylindrical shell including axial, tangential, radial and meridional rotation displacements is calculated. Also the values of force and moment resultants by the effect of external forces on the shell and then the critical loading for different buckling modes are studied. Radius of the cylinder is 876 mm. Graphite/epoxy composite material [13] and PZT-5A [14] were selected for the substrate orthotropic layer and piezoelectric layer respectively. The material properties for Graphite/epoxy orthotropic layer of the substrate were: E11=180.8(GPa), E22=10.4 (GPa) , G12=7.234 (GPa), υ12=0.28,  α11=11.34×10-6/0C, α22=36.9×10-6/0C, and for PZT-5A
piezoelectric layer E11=E22=63 (GPa), G12=24.2(GPa), υ12=0.3, α11= α22=0.9×10-6/0C and d31= d32=2.54×10-10(m/V). where  α11, α22 are the thermal expansion coefficients, d31, d32 are piezoelectric strain constants The thickness of the shell is 3mm and the thickness of piezoelectric is 0.1mm.. 

From the above studies it could be concluded that the critical bucking voltage for a cylindrical shell under the effect of piezoelectric actuator could suitably be obtained for different fiber angles.

The variation of the first axial mode critical bucking voltage of composite cylindrical shells with respect to circumferential harmonic is illustrated in Fig.3 Composite shells with different fiber angles under piezo actuator voltage are considered in the study. 
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Fig.3. plots of critical buckling voltage for the first axial mode assosiated with different circumferential modes m . Clamped-clamped composite cylindrical shell : (a) l/r=0.54 and (b) l/r=1.048

As can be noticed from these graphs, the composite cylinder shows  a higher resistance to the variation of piezoelectric force for fiber angles of  150;300,450. For lower l/r ratio (0.54) values of m below 4, shows a much higher value of voltage for 300 fiber angle which starts to decrease for higher mode numbers. This trend changes with a general increase from mode 14. For 150 fiber angle a sharp drop in the voltage can be seen with respect to lower fiber angle which has a negative slope with increasing m. For 450 fiber angle, on the other hand, this trend has a positive slope. For higher l/r ratio, (1.048) 150 fiber angle starts with a high voltage of 11000 volts with a drop to 2000 volts as the number of mode increases to 20. As the fiber angle increase to 300 and  450 almost constant value of 4000-5000 volts could be obtained for the whole range of mode numbers.In both cases for 00, 600,750,900 fiber angles the values of buckling voltage has a low range of 600-3000 voltage all values of  m.

Figure 4(a) describes the variation of axial displacement against the cylinder length for different fiber angles. At two supports as well as the center there is no displacement at any fiber angle, as expected. 
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(b)

Fig.4. displacement along the merdian (s-axis) of the composite cylinder. l/r=0.54; clamped-clamped boundary conditions; 500V steady state axisymmetric voltage: (a) axial displacement and (b) circumferential displacement.

This value starts from zero at the center increasing to a maximum  and back to zero as one moves from the center to the end supports. Obviously, the signs should be positive for one half of the length and negative for the other half of the cylinder. 

In Fig.4(b), the circumferential displacement shows a symmetric trend along the length of the cylinder for different fiber angles. 
With exception of 00 these values are maximum at the center of the cylinder. For 00 fiber angle a maximum value of 0.0225 mm can be seen for almost 60% of the central portion of the cylinder. In other words there is a sharp drop of circumferential dispalcement to zero close to the end supports.

In this numerical study, the moment and force resultants due to external forces along the length of the cylindrical shell may be calculated.

Figures 5 and 6(a) show the axisymmetric force along the length of the shell, induced by voltage - 500V and 500V, respectively. It can be seen form these graphs that the forces may be accordingly positive or negative depending on the sign of the applied voltage, except for 300 fiber angle. Moreover, at this fiber angle exactly opposite behaviour can be observed.
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Fig 5. variation of axial stress along the merdian (s-axis) of the shell. l/r=1.048; clamped-clamped boundary conditions; -500V steady state axisymmetric voltage.

The axial stress intensity Ns as the main cause of buckling for fiber angles 150,300,450 is less than that of other fiber angles and it means that the shell with these angles require more force or in higher voltage to buckle.

From the plots shown in Fig.7 it is seen that the values of moment resultants are considerably lower in magnitude when compared to the magnitude of axial stress resultant shown in Fig.6(a).Behaviors of Nθ,Nsθ are different from that of Ns which show considerable increase of magnitude near the clamped ends of the shell. Moving away from the ends the cicumferential and the shear stress densities are very small. Hence, it is clear that the influence of Ns will be much more pronounced on the values of buckling voltage compared to that of Nθ,Nsθ, this phenomenon can be seen in Figs. 6 (b-c).
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(c)
Fig 6. variation of stress resultants along the merdian 
(s-axis) of the shell. l/r=1.048; clamped-clamped boundary conditions; 500V steady state axisymmetric voltage.
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[image: image54.emf]along s-axis(meters)

-4

-3

-2

-1

0

1

2

3

4

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

Msθ (N-m)/m

0

15

30

45

60

75

90


(c)

Fig.7. variation of moment resultants along the merdian (s-axis) of the shell. l/r=1.048; clamped-clamped boundary conditions; 500V steady state axisymmetric voltage.

10 conclusions

Application of piezoelectrics to polymeric composite cylinderical shells may be a reliable and convenient method in the study of critical buckling.

Application of electrical voltage to a piezoelectric element may be used as an actuator to develop stress in desired directions. This allows the study of buckling phenomenon in circumferencial as well as axial modes.

In this research a voltage of -500 to 500 volts have been applied to a composite cylindrical shell with different winding angles. With the first axial mode different circumferential buckling modes for various fibre angles were studied.

Numerical studies carried out showed that the best fiber angle for the a lamina may be between 150 and 450 in order to have maximum resistance to buckling of angle ply composite cylinders.   
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