
Finding bipartition respecting natural dense clusters
ABHIJIT S. DESHPANDE  

Department of Computer Sci. and Engg. 
Indian Institute of Technology, Bombay 

Mumbai 400 076 
INDIA 

 

SACHIN B. PATKAR 
Department of Mathematics 

Indian Institute of Technology, Bombay 
Mumbai 400 076 

INDIA 
 

H. NARAYANAN  
Department of Electrical Engg. 

Indian Institute of Technology, Bombay 
Mumbai 400 076 

INDIA 
 

 
Abstract: - We present an efficient heuristic for finding good bipartitioning of the vertex set of a 
hypergraph, which respects the dense clusters inside. In a hypergraph modeling a VLSI netlist, 
these dense clusters typically correspond to dense combinational blocks and are better kept intact 
for some obvious VLSI design benefits. Our approach to identify the dense clusters is based on 
the theory of submodular functions. Once these clusters are identified, we make use of FM 
algorithm to get a good bipartition, providing some hints to FM to keep these clusters intact. This 
approach not only respects the natural clusters, but also produces bipartitions with better net-cut 
in quite a few cases. Hence, we propose that this approach can be used as an alternate strategy to 
find a good bipartition, which respects the dense clusters. 

 
Key-Words: - Circuit Partitioning, Dense Clusters, Submodular Functions. 

1 Introduction 
VLSI circuit partitioning is a vital part of 
physical design phase of the design process. 
The essence of circuit partitioning is to 
divide a circuit into a number of sub-
circuits such that size of each sub-circuit is 
less than some prescribed limit and the 
complexity of interconnections among 
these sub-circuits is minimized. Since, the 
typical sizes of hypergraphs arising in VLSI 
domain are quite large, we need to have an 
algorithm, which is quite efficient in the 
sense of execution time. So far, an 
algorithm proposed by Fidducia and 
Mattheyses [1] is the best-known algorithm, 
which runs almost linearly in the size of 
netlist. But FM algorithm works purely on 
the objective of minimizing the number of 
interconnects, and lacks the support to treat 
dense clusters in special manner. 

In this paper, we describe a new 
practical and efficient approach that aims at 

finding a good bipartition, which respects 
the natural dense clusters inside the netlist. 
These clusters typically represent the dense 
combinational blocks. Our approach is 
based on the theory of submodular 
functions [2]. We have tested this approach 
on ISDP98 IBM benchmarks and found to 
be producing bipartitions with better net-cut 
in atleast 50% of the test cases. So, it is 
evident that this approach not only respects 
the natural clusters, but also finds better 
bipartition in the process. 

To identify dense clusters, we use a 
network-flow model, which is quite similar 
to one suggested by Huang and Kahng [3]. 
They aim to find a k-way partitioning, 
whose blocks have maximum sum of 
densities and use this model to identify 
such dense blocks. But our approach differs 
from it in the sense that our ideas are based 
on the concept of fusion set (defined in the 



next section), obtained by minimization of 
submodular function. And we use this 
network-flow model for this minimization. 
Also, the approach suggested by Huang et 
al. is computationally expensive, and has 
been tested only on small benchmarks. On 
the contrary, as explained later during 
analysis, our approach does not take much 
time and has been tested on large ISPD98 
benchmarks of size upto 210K cells. 

We use a hypergraph model of netlist, 
which is a more natural way to represent it. 
A circuit, represented as netlist, is 
essentially a collection of cells and nets, 
where each net connects two or more cells. 
Similarly hypergraph is also a collection of 
vertices and hyperedges, where each 
hyperedge can connect to two or more 
vertices. Hence vertices can model cells, 
whereas hyperedges can model nets. 

The paper is organized as follows. 
Section 2 describes relevant notations and 
definitions. In section 3, we describe the 
core idea of identifying dense clusters, 
which is based on the idea of fusion sets 
and related theory of submodular functions. 
Section 4 describes our heuristic approach 
of incorporating the idea of identifying 
dense clusters in bipartitioning using FM 
algorithm. Section 5 presents the results of 
the experiments carried out on ISPD98 
benchmarks of sizes ranging from 12K to 
210K cells. 

2 Preliminaries and notation 
We use the notation ( )hEVH ,  to represent 
the hypergraph, with vertex (cell) set V , 
hyperedge (net) set hE  and positive weight 
assignments ( ).vw  and ( ).ew  on vertex set 
and hyperedge set respectively. 

A function ℜ→vf 2: is submodular iff 
( ) ( ) ( ) ( )YXfYXfYfXf ∩+∪≥+ , 

VYX ⊆∀ , . Now, we define a submodular 
function ( ) ℜ→Ε− v2:.~  (refer [2] for 

proof of its submodularity), where ( )UΕ~  
denotes the set of edges which are 
completely contained in U . The function 

( )( ) ℜ→Ε− v
ew 2:.~ , which is a 

composition of ( ).ew and ( ).~Ε , is also a 
submodular function as 0≥ew . 

2.1 Partition associate function 
Given a sub-modular function ( )Xf , we 
define its partition associate function ( )Πf  
as ( ) ∑

Π∈

=Π
iv

iVff )( . 

2.2 Zero Singleton Submodular 
function  

Let ℜ→sf 2:  be a submodular function. 
Then the corresponding zero singleton 
submodular (z.s.s.) can be given as 
( ) ( ) { }( )∑

∈
−=

Uu
ufUfUf̂ . A z.s.s function 

f̂  has following properties: 

• f̂  is submodular 
• ( ) Seef ∈∀= ,0ˆ  

2.3 Fusion Set 
If ( ).f  is a z.s.s. on subsets of S, then a set 
T ⊆ S is called as a fusion set of f  iff: 
• ( ) 0<Tf , 
• ( ) ( ) TRRfTf ⊆∀≤ , , and 
• All subsets of T, on which ( ).f  

achieves a negative value, have a 
common element. 

Now, we state an important theorem, 
which is the core idea behind finding the 
dense clusters. 
 
Theorem: Let ( ).f  be a z.s.s. function on 
subsets of S, and N be a fusion set of ( ).f . 
Then there exists a partition Π of S such 
that ( ).f  reaches a minimum on it and N is 
contained in one of the blocks of Π. 

For proof of the above theorem and 
details on partition associate function, zero 
singleton submodular functions and fusion 
sets, the reader is referred to [2]. 



3 Submodular functions based 
approach 

As implied by the theorem stated in the 
previous section, if N is a fusion set of ( ).f , 
then it is always beneficial to keep it intact 
(uncut) during the process of partitioning. 

The algorithm (refer [2] for details) to 
identify the fusion set requires Ο(|V|) 
minimizations of corresponding 
submodular function, which means that it is 
computationally expensive. So, we adapt a 
more practical approach of identifying a 
dense set. The subset U0 ⊆ S, is called as 
dense set, if it has following property: 
• f(U0) = f(Fusion Set). 
And such a set U0 ⊆ S, is identified by 

finding out a subset, which minimizes the 
given z.s.s. function f(.) over all subsets of 
S. 

Now consider the submodular function, 
( ) ( )( ) kUwUf e −Ε−= ~ . It accounts for the 

weight of edges, which lie completely 
inside subset U. Note that there is a bias by 
“-k”, which is explained later. The partition 
associate of this function is given by 
( ) ( )( ) Π∗−Ε−=Π ∑

Π∈
kVwf

iV
ie

~ . It is 

obvious that the partition minimizing 
( )Πf , maximizes the number of edges 

inside the blocks of the partition, and hence 
reduces the net-cut. The “-k∗|Π|” part of the 
function makes sure that the minimization 
does not produce the trivial partition with 
the entire set S as the only block in the 
partition.  

3.1 Finding Dense set using 
( )( ) kUwe −Ε− ~  

The z.s.s. corresponding to 
( )( ) kUwe −Ε− ~  is given by 

( ) ( ) ( )( ) kUwUwkUf ev −Ε−∗= ~ˆ . This 
z.s.s. is the linearized version of the 
measure of density of the subset U given by 
the ratio of the weight of edges with both 
endpoints in U and the weight of the vertex 
subset U.  

To find out the dense set U ⊆ V, which 
has edge density atleast k, we would like to 
minimize this z.s.s., which is equivalent to 
minimizing ( ) ( ) ( )( )UwUwkUf ev Ε−∗= ~ˆ . 
This minimization is achieved by finding 
max-flow (see [2] for details of maxfow-
mincut algorithm) in network-flow 
formulation of the above problem, which is 
presented in the following sub-section. 

3.2 Network-flow formulation for 
( ) ( )( )( )UwUwk evVU

Ε−∗
⊆

~min  

Consider the hypergraph ( )hEVH , , as 
shown in Fig. 1. We represent this 
hypergrpah as a bipartite graph 
( )EVVG ,, 21 , where 
• 1V ≡ Set of vertices, which has one 

vertex corresponding to each vertex of 
hypergraph H . The weight of such a 
vertex u1 ∈ V1 is equal to the weight of 
corresponding vertex u ∈ V. 

• 2V ≡ Set of vertices, which has one 
vertex corresponding to each hyperedge 
of hypergraph H . The weight of such a 
vertex u2 ∈ V2 is equal to the weight of 
corresponding hyperedge e ∈ Eh. 

• E ≡ Set of directed edges, which 
connect a vertex 1Vx∈  to a vertex 

2Vy∈ , iff in hypergraph H, the 
hyperedge corresponding to the node y, 
is incident on the vertex corresponding 
to the vertex x. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 – An example hypergraph consisting of 
hyperedges e1 = (v1, v2, v3), e2 = (v3, v4, v6, v7), 

e3 = (v4, v5, v6) and e4 = (v5, v6, v7) 

e3 

v2 
e1 

e2 

e4 

v3 

v7 

v4 

v6 

v5 

v1 



As shown in Fig. 2, now we construct 
the Flow Network for this bipartite graph G 
as follows: 
• Add a source vertex s and connect it to 

all nodes from the subset V1 by a 
forward edge. 

• Add a target vertex t and connect all 
nodes from subset V2 to it by forward 
edges. 

• Assign capacities of different types of 
edges as follows: 
o 1Vx∈∀ , Cap (s, x) = )(xwk v∗  
o For each edge (x, y) such 

that 1Vx∈ and 2Vy∈ , Cap (x, y) = ∞ 
o 2Vy∈∀ , Cap (y, t) = ( )ywe  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 – Flow Network corresponding to 
hypergraph shown in Fig. 1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 – Typical scenario when max-flow 
is reached 

A typical scenario, when the max-flow 
is reached (or equivalently min-cut is 
discovered) is shown in Fig. 3. 

3.3 Justification of network-flow 
model 

Now, we justify that using above network-
flow formulation, we can indeed minimize 

( ) ( )( )( )UwUwk ev Ε−∗ ~ , VU ⊆∀ . 
 
Claim: There exists no forward edge from 
subset Û  to (V2 – P). 
Proof: We know that when max-flow is 
reached, the capacity of the corresponding 
min-cut is reached, i.e. all forward edges  
from source-side to target-side of the min-
cut are saturated and all backward edges 
carry zero flow. 

But all edges, from subset V1 to V2 have 
infinite capacities, none of which can be 
saturated. 
 
Claim: There exists no vertex in P, which 
is not connected to any vertex in Û . 
Proof: As all forward edges from source-
side to target-side of the min-cut are 
saturated, all edges from the subset P to 
target node t are saturated. And all such 
edges have ( ) Pyywe ∈,  (non-zero) 
capacities. 

Now let ∃ a vertex p ∈ P, which is not 
connected to any vertex from subset Û . 

We know that the edge (p, t) carries 
( )pwe  flow. But as p is not connected to 

any of the vertices from subset Û , the edge 
(p, t) has to receive this flow from some 
edge from the subset (V1 – Û ) to p. But all 
such edges are backward edges as far as 
min-cut is concerned, which carry zero 
flow. Thus, we get a contradiction!! 

From above two claims, we can safely 
conclude that ( )UP ˆΓ≅ , where Γ(X) is 
defined as the set of all edges, which have 
atleast one end-point inside X. 

Hence, can say that 
( )( ) ( )UVwkUwMaxflow ve

ˆˆ
1 −∗+Γ=  

( ) ( )( ) ( )UVwkUVwVw vee
ˆˆ~

112 −∗+−Ε−=  

we

V2 V1  

∞ 

k∗wv 

t 

v2 

v3 

v4 
v5 
v6 
v7 

e1 

e2 

e3 

e4 

s 

v1 

we / we

? / we 

Û  
P 

V2 – PV1 – Û  

min-cut 

?/∞ 

0/∞ 

?/∞ 

k∗wv / k∗wv 

? / k∗wv 

t 

v1 

v3 
v4 

v5 
v6 
v7 

e1 

e2 

e3 

e4 

v1 

s 



( )2VwMaxflow e−⇒  

( ) ( )( )UVwUVwk ev
ˆ~ˆ

11 −Ε−−∗=  
Now, as ( )2Vwe  is constant, 

( )( )2VwMaxflow e−  minimizes 

( ) ( )( )( )UwUwk ev Ε−∗ ~ , VU ⊆∀ . 

4 Bipartition with cluster 
identification 

Our heuristic approach to obtain a 
bipartition, which respects natural clusters, 
works as follows: 
• First, it identifies as many natural dense 

clusters as possible, in the given circuit 
based on the ideas described in the 
previous section. 

• Then, it provides hints to the FM 
algorithm to keep these clusters intact 
during the process of partitioning. 

4.1 Algorithm to find out dense 
cluster 

Now, we present the outline of the heuristic 
approach, which obtains the bipartition of 
the given VLSI netlist respecting the 
natural clusters inside. 
 
Algorithm Dense_FM_Hyp 

1. Let ( )hEVH ,  be the given 
hypergraph, which is to be 
partitioned into two blocks. Now, we 
try to identify the dense clusters as 
follows: 

a. From H, we generate sub-
hypergraphs of size of about 25 
vertices based on the idea of 
proximity, i.e. once a vertex is 
chosen; its neighbor having 
maximum connectivity with the 
sub-graph constructed so far is 
added to it. 

b. For each sub-hypergraph generated, 
we try to identify the dense cluster 
inside it based on the ideas 
described in the previous section, 
with k equal to the density of the 
hypergraph itself. 

2. For each such dense cluster, we insert 
one artificial hyperedge of heavy 
weight into the original hypergraph 
H, which connects all the vertices 
from that cluster. This discourages 
FM from breaking that cluster. 

3. Use FM on this modified hypergraph 
to obtain its bipartition. 

End Algorithm Dense_FM_Hyp 
 

We have also devised the algorithm 
Dense_FM_Gr, which converts the 
hypergraph ( )hEVH ,  into its 
corresponding graph model G’ (V’, E’) 
using clique model and then proceeds 
similar to algorithm Dense_FM_Hyp. 

We convert ( )hEVH ,  into G’ (V’, E’) 
as follows: 

1. For each vertex u ∈ V in H, add a 
vertex u’ to V’ in G. The weight 
w(u’) is assigned same value as that 
of w(u). 

2. Replace each hyperedge by its 
equivalent clique representation. 

4.2 Analysis of the algorithm 
As described in the outline of the 

algorithm Dense_FM_Hyp, the sub-
hypergraph consists of 25 vertices. Hence, 
the max-flow subroutine to identify dense 
cluster inside it runs very fast. We have 
found that the total time taken for finding 
all dense clusters is less than one run of 
UCLA_FM_CLIP (an implementation of 
FM with CLIP [4] available at 
http://vlsicad.eecs.umich.edu/BK/PDtools). 
And typically, we need 100 runs of 
UCLA_FM_CLIP to get best results, 
whereas this pre-processing of identifying 
dense clusters is done only once. So, it adds 
only 0.5%-1.0% to the time taken by 100 
runs of UCLA_FM_CLIP. 

5 Experimental Results 
We have tested our approach on ISPD98 

IBM Circuit Benchmark Suite (available at 
http://vlsicad.cs.ucla.edu/cheese). It is a 
collection of large circuits with number of 
cells ranging from 12K to 210K. 



The results of experiments are presented 
in Table 1.  The first three columns 
describe the characteristics of the circuits. 
The fourth column gives the best net-cuts 
obtained over 100 runs of 
UCLA_FM_CLIP (an implementation of 
FM with CLIP [4] available at 
http://vlsicad.eecs.umich.edu/BK/PDtools). 
The fifth and seventh columns give the best 

net-cuts obtained over 100 runs of our 
heuristic approaches, viz. Dense_FM_Hyp 
and Dense_FM_Gr. The sixth and eighth 
columns give their corresponding 
improvements over UCLA_FM_CLIP. 

As it is evident from Table 1, our 
heuristic approaches Dense_FM_Hyp and 
Dense_FM_Gr produce better results in 
atleast 50% of the test cases. 

 
Circuit 
Name 

Number 
of cells 

Number 
of nets 

UCLA_FM_
CLIP 

Dense_FM
_Hyp  

improve-
ment (%) 

Dense_
FM_Gr 

improve-
ment (%) 

ibm01 12752 14111 278 251 9.71 253 9.0 
ibm02 19601 19584 292 301 -3.08 295 -1.03 
ibm03 23136 27401 961 984 -2.39 774 19.46 
ibm04 27507 31970 519 532 -2.50 517 0.39 
ibm05 29347 28446 1918 1956 -1.98 1963 -2.35 
ibm06 32498 34826 622 630 -1.29 669 -7.56 
ibm07 45926 48117 803 809 -0.75 825 -2.74 
ibm08 51309 50513 1356 1398 -3.10 1312 3.25 
ibm09 53395 60902 558 560 -0.36 567 -1.61 
ibm10 69429 75196 1104 1041 5.71 1100 0.36 
ibm11 70558 81454 1023 891 12.90 947 7.43 
ibm12 71076 77240 2785 2330 16.34 2334 16.19 
ibm13 84199 99666 1280 1031 19.45 1179 7.89 
ibm14 147605 152772 2277 2242 1.54 2260 0.75 
ibm15 161570 186608 2854 3333 -16.78 3275 -14.75 
ibm16 183184 190048 2470 2576 -4.29 2782 -12.63 
ibm17 185495 189581 3651 3141 13.97 3529 3.34 
ibm18 210613 201920 2576 2750 -6.75 2785 -8.11 

Table 1 – Experimental Results 

6 Conclusion 
We have designed and implemented a new 
heuristic to obtain a bipartition of netlist, 
which respects natural dense clusters. Over 
100 runs, this approach also produced 
bipartitions with better net-cut in atleast 
50% of the ISPD98 benchmark circuits. 
Hence, we propose that this approach can be 
used to obtain a bipartition, which respects 
natural clusters and also has better net-cut. 
 
References: 
[1] C. M. Fiduccia and R. M. Mattheyses, 

“A linear-time heuristic for improving 
network partitions”, Proc. of Design 

Automation Conference, 1982, pp. 175-
181. 

[2] H. Narayanan, “Submodular Functions 
and Electrical Networks”, Annals of 
Discrete Mathematics, North Holland, 
1997. 

[3] D. J.–H. Huang and A. B. Kahng, 
“When clusters meet partitions: new 
density-based methods for circuit 
decomposition”, Proc. of European 
conference on Design and Test, 1995, 
pp. 60-64. 

[4] Shantanu Dutt and Wenyong Deng, 
“VLSI Circuit Partitioning by Cluster-
Removal Using Iterative Improvement 
Techniques”, Proc. of IEEE/ACM Int’l 
Conference on CAD, 1996, pp. 194-200. 

 


