
Dynamic Adaptation of Multi-key Index for Distributed Database System

M. S. HOSAIN†, M. A. H. NEWTON‡, M. M. RAHMAN‡‡
†Department of Computer Science & Engineering

The University of Asia Pacific
Road # 3/A, Dhanmondi, Dhaka – 1209

BANGLADESH
‡CSE Dept., Bangladesh University of Engineering & Technology, Dhaka – 1000

‡‡CSE Dept., Manarat International University, Dhaka – 1212
 http://www.uap-bd.edu/cse/faculty/shazzad

Abstract: - Complex accessing structures like indices are a major aspect of centralized database for efficient record
searching. We have proposed a multi-key index model, which enables efficient query execution in distributed
database management system. In this paper we present algorithms that make our index model more adaptive in
distributed environment because adaptability in a dynamic environment, space utilization, and operation speed are
important criteria in assessing a multi-key file structure.

Key - Words: - Distributed database, Multi-key index, Dynamic adaptation and Grid file.

1 Introduction
A distributed database is a collection of data
distributed over different computers in a network.
Every site of the network has autonomous processing
capability and can perform local applications. Every
site also participates in the execution of global
application, which requires accessing data from
several sites using a communication subsystem [1, 2,
3]. For global application the query is transformed
into sub-queries and the sub-queries are sent to
different sites. The sites process the sub-queries
independently, send back the result to the source
node and the results are merged to produce the final
answer [2, 4].

Different types of distributed index models [5, 6]
are found in the literature to enhance query execution
in distributed information retrieval systems. In [7] the
authors have proposed an index model that is stored
and distributed across the nodes of the network. It
does not aim at answering complex database-like
queries, but rather at providing practical techniques
for searching data in a distributed has table (DHT).
INS/Twine [8] is similar to this work that locates
services and devices in large-scale environments
using intentional (i.e., based on what one is looking
for, not where it is located [9]) descriptions. Other
techniques like Search Enhanced by Topic
Segmentation (SETS) [10], Distributed Information
Search Component (DISCO) [11], broker

implementation with grid files and partition hashing
[12], Glossary-Of-Servers Server (GlOSS) [13] etc
are used to retrieve data from distributed information
systems. We have proposed multi-key index model,
which enhances query execution in distributed
database system [14]. The index has two components
global index and local index. The proposed global
index is a multi-key based index model and is stored
in all the sites. In this paper we present the techniques
and algorithms, which enable the global index to be
synchronized after insertion deletion and update of
records in databases.

The rest of the paper is organized as follows.
Section 2 presents background knowledge on multi-
key index for distributed database system, section 3
gives dynamic adaptation of the index and finally
section 4 draws a conclusion.

2 Background Knowledge
In distributed database a global query is sent to all the
sites if the system can’t locate the appropriate site
according to fragmentation schema [2] and allocation
schema [2]. This wastes bandwidth as well as takes
longer time to process the query. Our proposed global
index aims to minimize the number of sites that are to
be consulted to process user queries and consequently
to minimize the network traffic. To illustrate the
index model briefly we give the same example given

in [14]. In our example we take two different sites of a car database that is shown in Fig.1.

2.1. Record Centroid
The global index keeps succinct descriptions for all
the distinct records of distributed database according
to the indexed attributes. We call it record centroid
[14]. The centroid has one bit vector for site
information and one pointer for each indexed
attribute. Fig. 2 shows one such centroid from the car
database example.

10 Site bit vector

 Honda

 Tempo

Green
Centroid that exists in site 1

Fig. 2. Centroids with site addresses

2.2. Global Index Creation
The record centroids are kept in buckets and n-
dimensional grid array pointers point the buckets, n is
the number of indexed attributes. In our example, the
global index is created on three attributes of
manufacturer, model and color. If we divide the
attribute values lexicographically, we might have two
sets for manufacturer: Manufacturer < G, G <=
Manufacturer; three sets for Model: Model < K, K <=
Model < R, R <= Model; and two sets for color:
Color < H, H <= Color. Thus the manufacturer Ford
falls into the first partition (Ford < G). Similarly
color Black falls into the first partition (Black < G)
and model Pinto falls into the second partition (K <=
Pinto < R). The partition points are held in linear

scales [3, 15]. The set of three linear scales, one for
each attribute, defines a grid on the three-dimensional
attribute space. Fig. 3 shows grid array pointers
pointing to buckets and Fig. 4 show one such bucket
with its record centroids.

0 [1, 1, 1]
1 [1, 1, 2]

Bucket 1

2 [1, 2, 1]
3 [1, 2, 2]
4 [1, 3, 1]

Bucket 2

5 [1, 3, 2]

Bucket 3

.

.

.

.

.

.

.

.

11 [2, 3, 2]

Bucket 12

Fig. 3. Grid array pointing to buckets

3 Dynamic Adaptation
Every time a record is inserted, updated or deleted its
centroid is updated in the global index if necessary.
One of the major challenges of our index model is
that it should be efficient and adaptable to highly
dynamic environment [15], i.e., when there is a high
rate of insertions and deletions. The adaptability in a
dynamic environment, space utilization and operation
speed are important criteria in assessing a multi-key
index structure.

Records at site 1 Records at site 2

No Manuf. Model Color License No Manuf. Model Color License
1 Ford Pinto Green 23023234 1 Ford Mustang White 23432421

2 VW Civic White 23424223 2 VW Civic White 34655487

3 BMW Bug Red 43543556 3 Ford Pinto Green 45654656
4 Ford Mustang Black 64354454 4 BMW Pinto Green 65765323

5 BMW Mustang White 45645634 5 Ford Mustang White 32984934

6 Honda Tempo Green 23432567 6 Ford Pinto Green 56765712
7 VW Civic White 54654623 7 Honda Tempo Red 54366554

8 BMW Bug Red 34543545 8 VW Civic White 54765434

9 Ford Pinto Green 54654634 9 BMW Pinto Green 45645665
10 Honda Tempo Green 54654632

10 Honda Tempo Red 45654634

Fig. 1. Car database at two different sites

Fig. 4. Bucket 3

3.1 Global Index Insertion
Let a record with Manufacturer = Ford, Model =
Mustang, and Color = Black is inserted into local
database at site 2. If there already exists such record
in site 2 and/or other sites then there is a centroid in
global index. But if it is a new combination of values
of indexed attributes there is no centroid in the global
index. Site2 will send the values of this record to all
other sites. Every site will now locate the appropriate
bucket to store the corresponding centroid of the
record. As mentioned above this record falls into grid
array [1, 2, 1] and from this the centroid is stored in
Bucket 3. Before saving the centroid the bit value for
site2 in the site vector is made 1, i.e., the bit vector is
01.

While inserting a centroid, the bucket could be
found full. In that case the bucket is split into two
buckets and centroids will be distributed between
those two buckets. The splitting process depends on
two cases.
1. When only one pointer points to a bucket
2. When more than one pointer points to a bucket

To clarify the process we assume that, the Grid
Array cells from [1, 1, 1] to [2, 3, 2] point one bucket
each as shown in Fig. 3.

3.1.1 Case 1

According to linear scales the record with
Manufacturer = BMW, Model = Pinto, and Color =
Black falls into the bucket pointed by the grid array
[1, 2, 1] i.e. the 3rd bucket and Fig. 3 shows the
bucket is pointed only by one pointer. In that case
one of the sub-ranges represented by the bucket

contents must be divided. The splitting policies
should consider the dimension (the axis, along which
the grid block should be split) and the location (the
point at which the linear scale is partitioned). The
simplest splitting policies choose the dimension
according to a fixed schedule. Other splitting policies
may favor some attributes by splitting the
corresponding dimensions more often than others
[15]. We choose arbitrarily, the Manufacturer
dimension. The location of a split on a linear scale
need not necessarily be chosen at the midpoint of the
interval. Little is changed, if the split point is chosen
from a set of values, that are convenient for a given
application; for example, months or weeks on a time
axis [15]. In our example we choose a location at C.
The corresponding linear scale is now Manufacturer
(C, G), i.e. Manufacturer < C, C <= Manufacturer <
G, G <= Manufacturer.

Fig. 5. Insertion of centroids when one pointer
points to a bucket

Previously Bucket 1 was pointed only by one
pointer: grid-array [1, 1, 1] but now pointed by two
pointers: grid-array [1, 1, 1] and grid-array [2, 1, 1],
because the records that fall into group Manufacturer
< G, Model < K, Color < H now fall into two groups.
The groups are Manufacturer < C, Model < K, Color
< H and C <= Manufacturer < G, Model < K, Color <
H. Similarly both grid-array [1, 1, 2] and grid-array
[2, 1, 2] point to Bucket 2 and so on. Now we
allocate a new bucket, Bucket 13, and distribute the

records of Bucket 3 to Bucket 3 and Bucket 13
according to the following two groups:
1. Manufacturer < C, K <= Model < R, Color < H
2. C <= Manufacturer < G, K <= Model < R, Color

< H
Group1 is put in Bucket 3 and group2 in Bucket

13. So grid-array [1, 2, 1] points to Bucket 3 and
grid-array [2, 2, 1] points to Bucket 13. Fig. 5 shows
the allocation of Bucket 13 and the rearrangement of
pointers in grid-array.

3.1.2 Case 2
Now insert a record that falls into Bucket 2 that is
pointed by two pointers: grid-array [1, 1, 2] and grid-
array [2, 1, 2]. If the bucket is full then the linear
scales are not split rather a new bucket, Bucket 14, is
allocated and centroids are distributed according to
the following groups:

1. Manufacturer < C, Model < K, H <= Color
2. C <= Manufacturer < G, Model < K, H <=

Color

Fig. 6. Insertion of centroids when more than one
pointer point to a bucket

If group1 is kept in Bucket 2 and group2 in Bucket
14 then grid-array [1, 1, 2] points to Bucket 2 and
grid-array [2, 1, 2] points to newly created bucket.
Fig. 6 shows the allocation of Bucket 14 and
rearrangement of pointers in grid-array. Simulation

results show that as son as the number of inserted
centroids reaches a small multiple of the bucket
capacity, the average bucket occupancy is around 70
percent for both the growing file and the steady state
file.

3.1.3 Insertion Algorithm
The algorithm to insert a centroid into the global
index is given below:

Insert GI (inCentroid){

Search GI (inCentroid)
If inCentroid exists in global index Then

turn on the bit of the corresponding site
return

Else
If the bucket is no full Then

insert the inCentroid into the bucket
Else If bucket is full Then

find the number of pointers point the bucket
If the bucket is pointed by only one pointer Then

randomly select any one of the linear scales
divide it into its middle
add a new bucket into the index file
distribute the centroids according to new linear scales
make necessary changes of the grid array pointers
put the inCentroid in the corresponding bucket

End If
Else If the number of pointers are more than one Then

add a new bucket into the index file
make necessary change in grid array pointers
distribute centroids according to grid array pointers
put the inCentroid in the corresponding bucket

End If
End If

End If
}

3.2 Global Index Deletion
When a record is deleted from a local database its
corresponding bit in the site vector is made zero and
the result is published to other sites. If all the bits in
the site vector are zero then the centroid is deleted
from the bucket. To maintain reasonable storage
utilization, two candidate buckets might be merged if
their combined number of records falls below some
threshold. The records would be moved into one of
the buckets and pointers to the other reassigned to it.
The empty bucket would be removed from the file.
There are two kinds of merging: bucket merging and
merging of cross sections in the grid directory. It is

needless to reduce the directory size as soon as
possible, because it will soon grow back to its earlier
size.

3.2.1 Deletion Algorithm
The algorithm to delete a centroid is given below:

Delete GI (outCentroid){

Search GI (outRec)
If the outRec is found in the bucket Then

Turn off the bit of the corresponding site
If all site bits are zero Then

delete the centroid from bucket
If the no of centroids fall below some threshold Then

 move centroids into one bucket
 reassign the bucket pointers

End If
End If

End If
}

4 Simulation Results
To analyze the behavior and performance of the
global index we have been done a simulation. The
performance of an index file is determined by two
criteria: processing time and memory utilization. In
view of the fact, that the grid file holds the two-disk-
access principle and the grid directory only needs a
small part of the space, we only look at the average
bucket occupancy of the global index. The average
bucket occupancy does not need to be close to 100
percent as well as it should not be arbitrary small. For
the growing file, which results from repeated
insertions, the simulation result is given in Fig. 7.

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000
number of centroids inserted

av
er

ag
e

b
u

ck
et

o

cc
u

p
an

cy

Fig. 7. Average bucket occupancy for a growing file

In this simulation the bucket capacity is taken as
100. From Fig. 7 it is found that as soon as the
number of inserted centroids reaches a small multiple
of the bucket capacity, the average bucket occupancy
shows a steady state behavior with small fluctuations
around 70 percent. Similarly, for the steady state file,
where in a long run the number of insertions is equal
to the number of deletions, the average bucket
occupancy will show steady state behavior with small
differences for different percentage of merging-
threshold policy.

5 Conclusion
The multi-key index for distributed database system
is designed to handle efficiently a collection of
centroids with a modest number of search attributes.
Within this usage environment it combines quite a
few of the better properties of multi-key file
structures, such as, high data storage utilizations of
70 percent; smooth adaptation to the stored contents;
a directory, which is quite compact and efficient
space utilization.

References:
[1] D. Bell and J. Grimson, Distributed Database

Systems, Addison-Wesley, Wokingham, 1992.
[2] Stefano Ceri and Ginseppe Pelagatti, Distributed

databases Principals & Systems , McGrawHill
Book Company, 1984.

[3] Abraham Silberschatz, Henry F. Korth and S.
Sudarshan, Database System Concepts, 3rd ed.,
The McGraw Hill Companies, 1997.

[4] Anthony Tomasic, Louiqa Raschid and Patrick
Valduriez, Scaling access to heterogeneous
database with DISCO, IEEE Transactions on
Knowledge and Data Engineering, Vol. 10, No.
5, 1998.

[5] Maria Wahid Chowdhury, Chowdhury Mofizur
Rahman and Md. Humayun Kabir, Distributed
Index: Algorithms and Models, Proc. of the 4th
International Conference on Computer and
Information Technology, Dhaka, Bangladesh,
December 2000.

[6] Jinyang Li, Boon Thau Loo, Joseph Hellerstein,
,Frans Kaashoek, david Karger and Robert
Morris, On the Feasibility of Peer-to-Peer Web
Indexing and Search, Proc. of 2nd International
Workshop on Peer-to-Peer Systems, Berkely,
CA, February 2003.

[7] P. A. Felber, E. W. Biersack, L. Garces-Erice,
K.W. Ross and G. Urvoy-Keller, Data Indexing
and Querying in P2P DHT Networks, ICDCS,
Tokyo, Japan, 2004.

[8] M. Balazinska, H. Balakrishnan and D. Karger,
INS/Twine: A Scalable Peer-to-Peer Architecture
for Intentional Resource Discovery, Proc. of the
1st International Conference on Pervasive
Computing, August 2002.

[9] William Adjie-Winoto, Elliot Schwartz, Hari
Balakrishnan and Jeremy Lilley, The Design and
Implementation of an Intentional Naming
System, Symposium on Operating Systems
Principles, 1999.

[10] Mayank Bawa, Roberto J. Bayardo Jr. and
Rakesh Agrawal, SETS: Search Enhanced by
Topic-Segmentation, Proc. of the 26th Annual
ACM Conference on Research and Development
in Information Retrieval, Berkeley, California,
August 2003.

[11] Anthony Tomasic, Louiqa Raschid and Patrick
Valduriez, Scaling access to heterogeneous

database with DISCO, IEEE Transactions on
Knowledge and Data Engineering, Vol. 10, No.
5, 1998.

[12] Anthony Tomasic, Luis Gravano, Calvin Lue,
Peter Schwarz and Laura Haas, Data structures
for efficient broker implementation, ACM
Transactions on Information Systems, Vol. 15,
No. 3, July 1997.

[13] L. Gravano, H. Garica-Molina and A. Tomasic,
Gloss: Text-source discovery over the Internet,
ACM Transactions of Database Systems, Vol. 24,
No. 2, 1999, pp. 229- 264.

[14] Md. Shazzad Hosain and Muhammad Abdul
Hakim Newton, Multi-Key Index for Distributed
Database System, International Journal of
Software Engineering and Knowledge
Engineering, Vol. 15, No. 2, May 2005, pp. 433
– 438.

[15] Nievergelt, J. Hinterberger and H. Sevcik, The
Grid File: An Adaptable Symmetric Multi-Key
File Structure, ACM Transactions on Database
Systems, Vol. 9, No. 1, 1984, pp. 38-71.

