
Engineering of Embedded Linux ATM for MPC8260 and Derivatives 
 

APOSTOLOS MELIONES 
Ellemedia Technologies 

223 Syngrou Ave., GR-17121, Athens 
meliones@ellemedia.com 

 
 

Abstract: - Network processors provide enormous potential for differentiated high-end integrated networking 
and communications systems. The PPC PowerQUICC architecture has made this processor family a basic 
element for networking and communications systems. Its impressive market share has made this processor 
family the undisputed leader in the communications processor market. On the other hand, Linux is particularly 
popular in network embedded systems because of its proven networking capabilities and well suiting for net-
working applications and services that require high reliability and high availability, and the flexibility it offers 
to specifically tailor it for a special hardware configuration. Furthermore, ATM is very popular in WAN back-
bone and access networks, especially because of the large investments made by Telcos and ISPs and the inher-
ent support of scalable bandwidths and guaranteed QoS, which facilitates new classes of multimedia services. 
This paper discusses for the first time the engineering of Linux ATM on the MPC8260 communications proc-
essor and derivative CPUs and presents embedded HTTP and SNMP system management interfaces for ATM 
configuration and monitoring. This work is important to the embedded networking community for the devel-
opment of ATM access devices for high-end communication and networking systems. 
 
Keywords: - Linux ATM, ATM device driver, MPC8260, MPC860, ATM access device, integrated access 
device 

 
1   Introduction 
Today, the use of Linux in embedded systems is no 
laughing matter. Linux has become a preferred oper-
ating system for embedded systems, mainly because 
of its open source, maturity and robustness, the 
multitude of open source and free software projects 
around it, the community developing it, and the 
flexibility it offers to specifically tailor it for a spe-
cial hardware configuration or for support of a cer-
tain type of application [1]. Industry and govern-
ment agencies are increasingly adopting Linux. It is 
particularly popular in network embedded systems 
because of its proven networking capabilities and 
well suiting for networking applications and services 
that require high reliability and high availability, and 
the flexibility it offers to specifically tailor it for 
customized hardware configurations. ATM domi-
nates WAN backbone and access network technol-
ogy, especially because of large investments made 
by Telcos and ISPs and the inherent support of scal-
able bandwidths and guaranteed QoS in terms of 
throughput and jitter, which facilitates new classes 
of multimedia services. However, the real world is 
dominated by connectionless IP networks. Running 
IP over ATM is mainly an encapsulation issue, de-
fined in RFC1483/1577. A comprehensive overview 
of ATM is presented in [2].  
According to a report recently released by Gartner 
Dataquest [3], the PowerQUICC family’s market 

share reached 82.7 percent in 2002, making the 
processor family the undisputed leader in the com-
munications processor market. To date, 150M units 
have been shipped. MPC860 and MPC8260 are 
Motorola’s PowerQUICC and PowerQUICC-II ar-
chitecture respectively single-chip integrated micro-
processor and peripheral combination that can be 
used in a broad range of controller applications, par-
ticularly in communications and networking prod-
ucts. MPC8260 is the next generation MPC860, 
delivering higher levels of system performance, pe-
ripheral integration and programmability to the 
communications market. The integration of a 
PowerPC core, a RISC-based communications proc-
essor module (CPM) and a circuit board's worth of 
system interface and control functions in a dual-
processor architecture provides enormous potential 
in developing differentiated high-end networking 
and communications systems, such as SOHO 
routers, integrated access devices, DSLAMs, central 
office switches, wireless infrastructure base stations, 
enterprise and VPN routers, media gateways for 
packet telephony etc., while significantly reducing 
time-to-market development stages. The CPM off-
loads peripheral tasks from the embedded process-
ing core and supports multiple high bit rate commu-
nications protocols. The degree of system integra-
tion in the PowerQUICC-I/-II architecture could 
significantly reduce a system's component count, 



shorten customers time-to-market and slash compo-
nent cost. 
Linux ATM for the MPC8260 family of network 
processors is based on a porting of the SourceForge 
Linux ATM driver for the MPC86x ESAR [4]. 
Common supported ATM features are UBR and 
CBR traffic types, AAL0 and AAL5 cell formats, as 
well as the UTOPIA interface. Besides offering a 
significant performance increase over MPC86x 
ESAR, the MPC8260 ATM driver in addition sup-
ports VBR real-time and non real-time services. The 
relevant work sketches the reference system and 
driver architecture, details items of the segmentation 
and reassembly mechanism which are additions spe-
cific for MPC8260, details UTOPIA mode pro-
gramming, and resolves important issues related to 
the Linux kernel, such as the packet forwarding per-
formance and support of new devices in earlier ker-
nels. It also describes embedded HTTP and SNMP 
management interfaces for ATM configuration and 
monitoring. We released a pre-alpha release of the 
device driver including the UTOPIA interface and 
UBR/CBR services to the Linux community to ap-
pease the ever-increasing demand for the release of 
a Linux ATM driver for the MPC8260 [5]. The im-
portance of this development to the embedded net-
working community is evident by several thousands 
visits to the released driver web page by the time of 
writing. 
The Linux ATM driver for MPC8260 conforms to 
the Linux ATM device driver interface [6], which de-
fines the kernel inbuilt interface between the ATM 
protocol stack and device drivers, and is combined 
with the ATM on Linux distribution [7] compiled for 
a PPC target. This package contains a kernel patch 
for ATM protocol stacks, management and traffic 
tools, and supports raw ATM connections (PVCs 
and SVCs), classical IP over ATM compliant with 
RFC1577, LANE, MPOA, etc. For PPPoATM sup-
port compliant with RFC2364 a user space PPP 
daemon is needed in addition to the above [8], 
which has to support the pppoatm plugin [9]. 
 
 
2   MPC8260 Linux ATM Architecture 
Fig.1 depicts the MPC8260 Linux ATM reference 
architecture. The reference system is powered by 
MPC8264, and includes a UTOPIA ATM interface, 
an ATM T1/E1 WAN interface through a transmis-
sion convergence sub-layer and a multi-port fast 
Ethernet LAN, connected to CPM peripheral ports 
FCC1, FCC2 and FCC3 respectively. The imple-
mentation of the serial ATM interface and the T1/E1 
application are incremental tasks that require the 

existence of the ATM segmentation and reassembly 
and UTOPIA subsystems and is not examined in this 
paper. With minor additions, the same architecture 
can also support xDSL applications and inverse 
multiplexing for ATM over a multi-port T1/E1 
WAN interface. The engineering of Linux serial 
ATM on the MPC8260 communications processor 
for TDM access applications is analytically dis-
cussed in [10]. 
The Linux ATM device interface is basically a set of 
common data structures and conventions for ATM-
related system services under Linux. The Linux 
ATM user space denotes whatever uses the ATM 

device in a given context, such as a raw transport or 
IP over ATM. The SAR device driver is responsible 
for controlling the segmentation and reassembly and 
traffic shaping processes performed directly in 
hardware, for resource allocation and for coordina-
tion with the protocol, the PHY driver and the hard-
ware. PHY controls physical layer operation and 
gathers statistics. The reason for splitting the SAR 
and the PHY component is because several different 
PHY chips can be used with the same SAR. The 
kernel is capable of routing IP traffic between the 
supported network interfaces through the IP router 
subsystem, which is a process running completely in 
CPU mode. Fig.2 sketches the architecture of the 
MPC8260 Linux ATM driver, which is implemented 
through patching the MPC86xESAR driver with the 
mechanisms described in this paper.  

FCC1 FCC3

ATM-25
(utopia ATM)

ATM-E1
(serial ATM)

UTOPIA TDM MII

4 x 10/100Mb/s
ENET switch

SDRAM Flash

60x bus

MPC8260
PPC core

Linux IP Router

SAR device driver

UTOPIA interface

Linux ATM device interface

Linux ATM user space
(CLIP, PPPoA, tools etc.)

CPM

A
TM

 s
ta

ck

   TDM PHY

  TC layer interface

TC

...

FCC2
IMA

 
 

Fig.1: Reference system architecture. 



3   ATM SAR Controller  
An important aspect of programming the ATM 
controller is the understanding of the operational 
procedures for transmission and reception and the 
various data structures used for configuration and 
operation. The programming of the ATM controller 
is based on a porting of the SourceForge Linux 
ATM driver for the MPC86xESAR [4]. Detailed 
descriptions refer only to items that are additions 
specific for MPC8260. Furthermore, we discuss all 
problems in the course of design and implementa-
tion of the driver including their workarounds. Ele-
ments of the ATM device driver interface necessary 
for MPC86x and MPC82xx ATM device driver pro-
gramming across Linux kernels 2.4 and 2.6 have 
been presented in [11]. 

 
3.1   Address Mapping 
The address compression mechanism to look up 
channel numbers for incoming cells differs from 
MPC860 in the entry size of the VC tables and the 
index creation into the VP table. A new element is 
the Match Status bit. This should indicate no match 
for all VC table entries during initialisation and fol-
lowing the removal of an entry from the VC table. It 
should indicate a successful match when updating 

the corresponding VC table entry with the channel 
number to use for incoming cells with a specific 
VPI/VCI value. Incorrect handling of the MS bit 
will result in the receiving of signalling traffic on the 
raw cell queue before the synchronisation of the 
user-space ATM signalling demon with its counter-
part on the network side and may as well result to 
the discarding of cells. 
 
3.2   Connection Tables 
Since MPC8260 stores TCTs and RCTs in separate 
arrays the single MPC86x function accessing the 
coupled connection table mapped to by a channel is 
split into separate transmit and receive functions. 
Channel codes of 255 or less indicate internal chan-
nels. External channels are assigned numbers 256 
and above. Channel 1 is reserved as the raw cell 
queue and channel 0 is reserved. No additional CT 
entry is reserved for CPM internal use. 
 
3.3   ATM Parameter RAM 
The ATM parameter RAM initialisation follows the 
corresponding procedure in MPC86x specifically 
tailored to the MPC8260 mapping. The ATM 
PRAM is stored in the dual-port RAM at offset 
0x8400 or 0x8500 to the DPR base depending on the 

Register ATM dev

Detect ATM dev

Initialize ATM dev

Enable IRQs

Fi
le

: m
pc

86
0s

ar
_d

et
ec

t.c

Calculate device-wide
APC params

In
it U

TO
PI

A/
se

ria
l A

TM

Fi
le

: u
to

pi
a.

c/
se

ria
l.c

D
et

ec
t A

TM
 d

ev
ic

e

Fi
le

: m
pc

86
0s

ar
.c

Alloc/init pool of channel
numbers, BDs & skb ptrs

Reactivate non-
real-time channels

Check if transmitter
busy

Update BD from skb,
activate BD, force Tx

Read /proc statistics

Free channel id

Close Rx/Tx channel

Delete address mapping

Alloc & init channel struct
(save channel's CT ptr)

Activate channel

Alloc Rx BD ring skbs &
mark BDs as empty

Add address mapping
vpi/vci->chan

Create cell header
& copy it in TCT

Enable Tx on real-time
chans (NRT use AVCF)

Free Rx ring skbs,
BDs & skb ptrsC

lo
se

 R
x c

ha
nn

el

Disable Tx on real-time
chans (NRT use AVCF)

Free Tx ring skbs, BDs
& skb ptrs

C
lo

se
 T

x c
ha

nn
el

Decrement total
real-time bandwidth

Wait until all buffers
have been sent

Associate chan with
command in PRAM

Invoke restart/stop
ATM commandEn

-/d
is

ab
le

R
x c

ha
nn

el

Specify APC level &
channel type

Activate/Deactivate
channel ATM cmd

Wait chan removal
from APC schedulerE

na
bl

e/
di

sa
bl

e T
x c

ha
nn

el Associate chan with
command in PRAM

Alloc/init Rx BD ring
& skb ptrs, Init RCT

In
iti

al
iz

e R
x c

ha
nn

el

Enable Rx on channel

Initialize Rx channel

Ac
tiv

at
e 

R
x c

ha
nn

el

Disable Rx on channel

Enable RXB in BDs

Alloc/init Tx BD ring
& skb ptrs, Init TCT

In
iti

al
iz

e 
Tx

 ch
an

ne
l

Set chan APC params
Initialize Tx channel

A
ct

iv
at

e 
Tx

 ch
an

Disable Rx IRQs

Enable Rx IRQs

Disable Tx IRQs,
set chan busy

Enable Tx IRQs, clear
chan busy

Set AVCF non-RT, calc
total real-time bandwidth

Config UTOPIA/
TDM/GPIO pins

Activate RCQ

Initialize PRAM

de
v-

w
id

e
AP

C
 c

al
c

Init RCQ chan struct
(save CT ptr)

Activate rcq_chan (do not
add address mapping)In

it 
R

C
Q

Tell rx_bh to enable Rx
on channel

Tell rx_bh to stop Rx on
channel

Se
nd

Associate Linux ATM dev
with driver's dev data

Initialize dev data

Associate Linux ATM vcc
with driver's chan structO

pe
n

Init ring sizes, priorities,
phy/min/max_vc byterate

Alloc channels struct, init
vpi/vci range, stat &bh_tq

In
it d

ev
 d

at
a

Alloc/init irq queue &
irq queue PRAM table

Alloc/init APC param/
priority/scheduling tables

In
it 

FC
C

2 
AT

M
 P

R
A

M

Request & clear PRAM

C
lo

se

If valid rx or tx complete
IRQ call rx/tx_bh

Read/clear status, get
chan num, advance ptr

bo
tto

m
 h

al
f h

an
dl

er

Report irregular events

If global irq queue task
in immediate BH queue

Read/clear events

U
TO

P
IA

 IR
Q

ha
nd

le
r

Report irregular events

Free skbs of sent BDs in
ring & update tail

Tx
 B

H

Update channel statistics

Get/replace skbs of BDs
with data in ring

R
x 

B
H

Add received len & point
skb to Linux ATM vcc

Set BD empty & sending
of irq after refilling

Report reception errors &
update channel statistics

Push skb up to ATM
socket layer

Init UTOPIA / TC layer

Initialize serial ATM PHY

Read/clear events

Report cell delineation
state & irregular eventsTC

 la
ye

r
IR

Q
 h

an
dl

er

Operations registered by ATM device

Wake up sends waiting
for space in TxBD ring

Install TC IRQ handler

Enable TC IRQs in mask

Mask enable UTOPIA irqs

E
na

bl
e 

IR
Q

s

Install UTOPIA irq handler

Calculate cells per slot

calc scheduling table size

Alloc int-/external CTs

Init modes, BD base ext,
cell temp base, UNI stats

Alloc/init addressing
tables & masks

Init idle size/base, empty
payload, CRC32 fields

 
 

Fig.2: Linux MPC8260 ATM device driver architecture. 



peripheral used. The ATM controller data structures 
are packed and any padding will result in improper 
mapping of data structure elements to PRAM. Im-
proper alignment of parameters or initialisation will 
result in kernel crash during system boot or im-
proper operation. DPR stores connection tables for 
fast channels. The amount of DPR memory needed 
for a single FCC ATM device with 128 internal 
channels is 9272 bytes. A 128-byte explicit alloca-
tion, or 256 bytes in case of dual-FCC driver opera-
tion, is fixed at the end of the DPR data area for 
CPM use. Therefore, we modified the kernel DPR 
allocator limit. In case a microcode package is 
downloaded in the DPR to recover from a certain 
device error or to enhance the CPM functionality the 
DPR allocator base has to change accordingly, re-
ducing the maximum number of internal channels. 
Related to the parameter RAM initialisation is the 
definition of one priority interrupt queue and a unit 
global interrupt threshold, of priority and scheduling 
tables for real-time and non-real-time service classes 
and max iteration allowed in the APC, as well as the 
selection of 60x bus, VP table in DPR, and checking 
of unallocated bits during address compression. 
 
3.4   External Memory Allocation 
The external memory allocations used with the CPM 
require physically contiguous, uncached pages, be-
cause the CPM accesses memory without the use of 
the cache. In MPC8260 a number of physically con-
tiguous pages of host memory is allocated for the 
CPM early in kernel initialisation. We increased the 
number of CPM host memory pages in the kernel 
and used the CPM host memory allocator to acquire 
space in external memory for the ATM specific data 
structures. Alternatively, the MPC86x function can 
be used, in which the page table entries must be 
modified so that the pages are designated as write-
through in addition to caching-inhibited. 
 
3.5   Buffer Descriptors and Socket Buffers 
The BD allocation mechanism matches the static 
buffer allocation mode. The limitation that all BDs 
must lie within a 256KByte region does not exist 
and thus it is possible to use kmalloc() for this pur-
pose. The fact that this mechanism allows client 
code to allocate blocks of varying size means we can 
support different ring sizes per traffic class. Large 
rings could support fast channels while keeping ring 
sizes small for slow channels to save memory. Han-
dling of socket buffers (here for storing ATM 
frames) is unique throughout all the Linux network 
subsystems. 
 

3.6   Interrupt Mechanism 
Besides tailoring the interrupt handling mechanism 
to the MPC8260-specific interrupt queue and BD 
structures, the bottom half handler clears the inter-
rupt queue entry in the interrupt queue parameter ta-
ble each time an overrun occurs in the circular 
queue. The transmit BH handler ignores CRC error 
indications for AAL0 traffic since a CRC field is not 
included in the cell payload. In case the default 
AAL5 MTU size, which defines the length of AAL5 
buffers, is smaller than the default IP MTU value of 
9180 for use over ATM AAL5 defined in RFC1626 
[12] and a corresponding IP fragmentation is not de-
fined with the atmarp CLIP daemon the receive BH 
handler will drop large received frames. This will 
happen because several protocols in wide use 
throughout the Internet, such as the Network File 
System, use large frame sizes (e.g. 8KB). 
 
3.7   ATM Tx/Rx and Auto-VC-off/VC-on 
MPC86x supports ATM transmit activate/deactivate 
channel commands by writing to the CPM command 
register. In MPC8260 the CPM command set in-
cludes the ATM TX command. This turns a passive 
channel into an active one by inserting it into the 
APC scheduling table. Before issuing the command 
we set the flag VCON in the channel’s TCT and ini-
tialise the COMM_INFO fields (channel code, APC 
priority) in the parameter RAM. The command op-
erates on the used peripheral. The deactivate com-
mand is implemented by setting the Stop TX (STPT) 
flag in the TCT of the specified channel. STPT is 
not set for auto-deactivated UBR channels. After is-
suing the command the host has to wait for the TCT 
VCON flag to clear, indicating that the channel has 
been removed from the scheduling table. The host 
can issue another TX command only after the CPM 
has cleared VCON. The TX command should be is-
sued only after the channel’s TCT is completely ini-
tialised and the channel has BDs ready to transmit. 
MPC8260 does not include any ATM receive com-
mand, unlike MPC86xESAR which includes 
stop/restart receive commands. MPC8260 is stopped 
from receiving cells by disabling the receive buffer 
and frame events in the RCT of the specified chan-
nel. Enabling those events restarts the receiver to 
allow receiving cells for the specified channel. Note 
that the receive CLIP signalling daemon is exiting 
when stopping the ATM receiver through disabling 
the FCC receiver and you will have to reinitiate the 
protocol stack on both sides of the ATM connection. 
A typical error is to try to mimic the ATM 
stop/restart receive commands with the FCC re-
ceiver full or shortcut disable/enable sequence. 



3.8   Connection Table Programming Model  
The connection table programming model in 
MPC8260 resembles to that of MPC86x. Byte or-
dering is additionally specified as big endian and the 
GBL pin is asserted to force snooping of 
bus/memory transactions by the data cache in order 
to maintain data coherency on the 60x bus. Keeping 
a running total allocated bandwidth is extended to 
real-time channels. Note that you will have to re-
place min_pcr with max_pcr in net/atm/proc.c in or-
der to get non-zero peak cell rate information in 
/proc/net/atm/pvc for use by the management inter-
face, because the transmit rate is passed to the driver 
via the max_pcr QoS field of the Linux ATM device 
interface VC descriptor structure. UBR channels are 
assigned the maximum transmission rate. Real-time 
channels will still take priority, as non-real-time 
channels will be scheduled in the low priority table. 
The APC unit equation (1) determines the time-slot 
scheduling rate of a channel, modified to prevent 
numerical overflow as well as the calculation of in-
correct values for PCR and PCRF under integer 
arithmetic in the C programming language. 









×

−×+×
=

slotper  cells  rate byte VC
1 slot per  cells  rate byte VC  256  rate byte line R (1)

 

PCR = R / 256      PCRF = R % 256 

TCT[AVCF] is set only for UBR channels. A UBR 
channel is deactivated whenever the CPM detects 
there is no further data to send from that channel. To 
continue transmission after the host adds buffers, a 
new transmit command is needed. An inactive UBR 
channel is activated by send() (indicated by VCON 
bit not set). If AVCF is not set, the APC unit does 
not remove the channel from the scheduling table 
when there is no more data to send. Cell headers are 
copied in a channel’s TCT entry in big endian for-
mat. 
 
3.9   Enabling VBR Traffic 
We have extended the device driver to support VBR 
traffic classes. We maintained the two-priority levels 
scheme for servicing real-time channels before non-
real-time channels. VBR-rt and CBR channels share 
the high-priority scheduling table, while VBR-nrt 
channels join the UBR channels in the low priority 
table. A new function is added for accessing the 
transmit connection table extension mapped to by a 
VBR channel. Internal TCTEs are stored in DPR for 
fast channels. The COMM_INFO fields in the ATM 
Transmit command should be initialized for the 
VBR service. Furthermore, we set in the TCT entry 
for the channel the traffic type and the PCR APC pa-
rameters, and calculate PCR of VBR-rt channels in 

the running total bandwidth allocated for real-time 
channels. The SCR APC parameters stored in the 
TCTE entry are determined using (1). The SCR and 
MBS VBR traffic parameters are passed to the de-
vice driver through the modified user-space atmarp 
CLIP daemon via the modified Linux ATM device 
interface VC descriptor structure. Equation (2) de-
termines the BT parameter of the APC leaky bucket 
algorithm. 





 +−×−

++−×−=
256

SCRFPCRF)SCRF()2MBS(SCRPCR)(SCR2)(MBS BT

 

In the TCTE entry we also set OOBR and the way 
scheduling is affected by CLP. External VBR chan-
nels should be indicated in their scheduling tables. 
Fig.3 depicts the schematic VBR code. The shaded 
processes refer to the modified kernel ATM device 
interface and user-space CLIP protocol. The former 
is modified to define the VBR traffic classes and in-
clude VBR parameters in the ATM traffic parame-
ters structure. The latter is modified to support VBR 
QoS parameters when converting the binary encod-
ing of QoS parameters to textual representation and 
vice versa. This should be reflected on the maximum 
ATM QoS length operated by the user-space driver. 
A VBR service is requested through atmarp. 
 
3.10   Maintaining Memory Coherency 
Unlike DPR internal channels, external channels 
store their connection tables in external memory. 
When an ATM transmission on an external channel 
is requested the transmit command to the CPM is is-
sued before the TCT initialisation actually com-
pletes in external memory. Consequently, transmis-
sion will never start or Tx-buffer-not-ready events 
will be noticed in case the CPM tries to open mis-
matched TxBDs due to incorrect TBD_BASE in the 
TCT. In order to maintain a coherent memory for 
use with the CPM we force writing the modified 
data cache block out to memory following the TCT 
initialisation. Flushing the data cache is not neces-
sary following the stop transmit command because 
the host is waiting for the VCON flag to clear, 
which follows the completion of TCT[STPS] set in 
memory. Similarly, we flush the data cache follow-
ing the RCT initialisation. 
A similar error appears infrequently with native 
ATM traffic while the system is using NFS. It takes 
a while before the device driver command writing 
the channel code in the VC table during receive 
channel initialisation actually completes in memory. 
If data is received on this channel during this time 
cells will be discarded due to address look-up failure 
and counted as misinserted cells. Reception will 
start abruptly as soon as the channel code is eventu-



ally written in memory and a CRC/LNE error will 
be reported. The problem disappears using a flash-
disk or with CLIP traffic, in which case channels are 
opened at early time during connection setup. To 
solve the problem we flush the modified data cache 
block following the VC table entry write command. 
 
 
4   UTOPIA Mode Programming 
MPC8260 offers full 155-Mbps ATM SAR through 
UTOPIA II interface on FCC1 and FCC2 with sup-
port for up to 31 PHYs per interface, which make it 
ideal for high-density DSLAM line cards. ATM-25 
and OC-3 applications are implemented along the 
same lines. In our system application we used the 
IDT 77V106 transceiver with default initialization. 
We further tested the interface on a MPC8260ADS 
development platform using the PMC-SIERA 
PM5350 ATM-155 UNI. This section describes the 
CPM configuration for the UTOPIA mode, which 
corresponds to the Init UTOPIA PHY architectural 
block in Fig.2. This involves UTOPIA specific 
FCC1 programming and setting up of I/O ports and 
clocks. Using two or more ATM ports requires op-
eration in MPHY mode. Pin configuration involves 

the selection of dedicated UTOPIA interface signals 
among the peripheral functions multiplexed onto the 
parallel I/O ports and of general purpose I/O pins, as 
illustrated in Fig.4, through proper programming of 
the port registers. Pin configuration corresponds to 
the Config UTOPIA pins architectural block in 
Fig.2. The interrupt handler for the UTOPIA appli-
cation corresponds to the FCC1 interrupt vector. 
FCC1 is operated in ATM internal rate mode as a 
UTOPIA master in a single PHY environment. In 
case the total transmission rate is less than the PHY 
rate this mode saves CPM performance, because it is 
the PHY that fills the unused bandwidth with idle 
cells. Using the CPM multiplexing logic BRG5 is 
assigned to the FCC1 internal rate generator to clock 
the transmitter at the PHY rate. BRG5 was pro-
grammed to generate transmit cell requests equiva-
lent to the PHY rate every 2238 CPM clocks. 
BRGCLK is half the CPM clock and is divided by 
an odd number in the BRG configuration to ensure a 
50% duty cycle. Furthermore, BRG6 was assigned 
as the FCC1 receive and transmit clock and pro-
grammed to generate a 33MHz UTOPIA clock. In 
case of ATM-155, BRG5 should generate a transmit 
cell request every 360 CPM clocks. Passing of 

0x8Y86

DPRAM
0

BT

PRI01

cbr vbr
-rt cbr vbr

-rt cbr vbr
-rt ...

ubr vbr
-nrt

vbr
-nrt ubr ...

High-priority scheduling table

Low-priority scheduling table

ATM Transmit
(PRI=1)

ATM Transmit
(PRI=0)

Channel Code

INT_TCTE_BASE0x8Y4A

EXT_TCTE_BASE0x8Y58

TCT
0

0x0C PCRF
PCR

01
10 11

TCTE
0

0x0C

SCRF

VBR2

SCR
BT

OOBRFCC1: Y=4
FCC2: Y=5

External Memory

tc
te

tc
te

TCTE=1 indicates
external TCTEs

Channel Code
to TCTE

Channel Code

TCTE

TCTE

modified
atmarp

modified Linux ATM
device driver i/f
VC descriptor

vcc->qos.txtp.scr

vcc->qos.txtp.mbs

vcc->qos.txtp.pcr Equation 1

Equation 2vcc->qos.txtp.traffic_class == ATM_VBR_RT

calculate running total
allocated bandwidth for

real-time channels

VBR device driver code enabled if (vcc->qos.txtp.traffic_class == ATM_VBR_RT || vcc->qos.txtp.traffic_class == ATM_VBR_NRT)

vcc->qos.txtp.traffic_class

vcc->qos.txtp.pcr

 
Fig.3: Schematic VBR device driver code. 



FCC1 interrupt requests to the core is enabled in the 
SIU interrupt mask register. A command is issued to 
the CPM to initialise the transmit and receive pa-
rameters in the FCC1 parameter RAM involving the 
FCC1 (not the ATM) sub-block code. BRG5 and the 
FCC1 receiver and transmitter are enabled as the last 
step in the initialization process. 
 

   Table 1: UTOPIA mode programming. 
Register Value (hex) Description 
GFMR1 A (4000000A) ATM mode, disable FCC1 

Rx/Tx (CPM43) 
FPSMR1 400 (200400) Single PHY master mode, 

disable Rx parity (CPM43) 
CMXUAR &=FF0F FCC1 internal rate clk=BRG5
BRGC5 8BC Cell rate programming, disable

count 
FTIRR1 PHY0 80 Internal rate mode 
CMXFCR 09000000 Connect FCC1 to NMSI pins, 

FCC1 Rx/Tx clk=BRG6 
BRGC6 10002 33MHz 
SIMRL 80000000 Allow IRQs from FCC1 
CPCR 12010280 Init Rx/Tx parameters in FCC1

PRAM 
BRGC5 |=10000 Enable scheduling of cells 
GFMR1 |=30 Enable FCC1 Rx/Tx 

 
A software workaround is provided against the 
CPM43 device error on HiP3 Rev. A.1 devices. 
When the system bus clock is 66MHz the FCC1 
transmitter will ignore the negation of the TxCLAV 
signal in single PHY mode. Consequently the UTO-
PIA slave will be unable to control the flow of cells. 
The workaround is to configure FCC1 in MPHY 
master mode using a single PHY. 
 
 
5   Linux Kernel Considerations 
 
5.1   Routing Performance 
The packet forwarding mechanism is inefficient in 
kernels up to 2.4.7. The IPv4 packet handler and 
routing mechanisms are adequately efficient, as the 
journey of a packet inside the kernel networking 
subsystem in either the local delivery - in which case 
the layer 4 protocol is processed and the packet is 
passed to a userspace process - or the “forward to 
another network” direction follows the determina-
tion of the packet’s destination by the routing func-
tion. The kernel assigns the whole Linux networking 
subsystem to a soft interrupt mechanism. The CLIP 
protocol hands the packet over to the networking 
subsystem. Then a softirq is requested to handle the 
packet. In order to require quicker attention from the 
packet forwarding mechanism to avoid latency is-
sues in a high-interrupt-rate device, we force han-
dling of pending softirqs following the handling of 

hardware interrupts in the generic interrupt handler 
(kernel/softirq.c:do_softirq() is called from within 
arch/ppc/kernel/irq.c:do_IRQ()). 
 
5.2   HiP4 and later derivatives of MPC8260 
Kernels up to 2.4.10 do not support HiP4 or later de-
rivatives of MPC8260. This has been fixed as of 
kernel 2.4.11 in arch/ppc/kernel/cputable.c. The 
most significant bit in the PVR mask for MPC82xx 
was cleared so as the kernel could recognize the 
603e core for HiP4 devices. Kernel 2.4.10 intro-
duced a big reorganization in the PPC architecture, 
so the described bug fix could not be patched to 
older kernels. For those we added an assembly patch 
in arch/ppc/kernel/misc.S in the function that reads 
the PVR register, which clears bit 0 of the value 
read. This way we deceived the kernel to take HiP4-
MPC8260 for a HiP3 device. 
 
 
6   Management Interface 
The reference system features an embedded HTTP 
server, which can be accessed via a web browser for 
system configuration and monitoring. Fig.5 depicts 
the CLIP HTTP management interface. The selected 
configuration is translated into a user-space script 
for CLIP setup [7]. The depicted configuration de-
fines a CBR service over PVC 0.0.32 with ILMI as-
signed address, default UNI signaling, 20Mbps con-
stant bitrate, and specific source and destination IP 
addresses belonging to the same LIS. The selection 
of a VBR-rt service translates further into a QoS pa-
rameter to atmarp (e.g. qos rt-vbr:pcr=6mbps,scr= 
2mbps,mbs=1000). A similar configuration page 
exists for PPPoATM including username, password, 
bandwidth, VPI/VCI, and CHAP/PAP authentica-
tion protocols. Another page monitors ATM traffic 
statistics and receiver errors per device. 
In addition to the ATM command line and HTTP 
management interfaces, SNMP support is also inte-
grated in the reference system. The proprietary 
ATM MIB provides for the remote management of 
the ATM devices. Wherever applicable the con-
struction of the MIB is in compliance with RFC2515 
[13]. The MIB contains tables for the ATM inter-
faces present, for PPPoATM, for CLIP VCs and for 
their traffic parameters description. The last table 
checks that all necessary values are inserted before 
row activation. This table is an exact replicate of the 
corresponding table in RFC2515, though the pa-
rameters interpretation is different. 
 
 



PC21

PA28
PA29

PA10-17
PA25-18

MPC8260
PD18-25

PD7
PC31

PD6
PD8
PD9

AD0-AD7

IDT
77106

RD

WR
ALE

CS
RST
TXDATA0-7
RXDATA0-7

TXEN

RXCLK

O
SC

32MHz

S
E

S
M

TXD+
TXD-

RXD+
RXD-

PE
67583

1
2

15
16

7
8

9
10

Gray
Brown
Yellow
Green
Red
Black
Orange
Blue

1
2

7

8
RJ45

a
n
a
l
o
g

a
n
a
l
o
g

B
R

G
5

C
P

M
M

U
X

U
TO

P
IA

 8
/1

6

IN
T

L2_HIT/IRQ4

TX
C

LK

PA26
PA27

PA31
PA30 TXCLAV

TXSOC

RXCLAV
RXSOC
RXEN

PD17
PD16

R
X

P
A

R
IT

Y
TX

P
A

R
IT

Y

TXLED
RXLED

C
P

M
M

U
X

B
R

G
6

33 MHz UTOPIA clk

In
te

rn
al

 ra
te

ge
ne

ra
to

r
FC

C
1

PC20

Green

Orange

VDD

Fig.4: Block/schematic diagram of UTOPIA ATM-25 application. 
 

 
Fig.5: CLIP HTTP Management Interface. 

7   Conclusions 
This paper discusses for the first time the engineer-
ing of Linux ATM on the PowerQUICC-II commu-
nications processor architecture. This work is im-
portant to the embedded networking community for 
the development of ATM access applications for 
high-end communication and networking systems. 
 
References 
[1] K. Yaghmour, Building Embedded Linux Sys-
tems, O’Reilly, 2003, ISBN 0-596-00222-X. 
[2] A. Alles, Internetworking with ATM, White Pa-
per, Cisco Systems, May 1995, http://cio.cisco.com/ 
warp/public/614/12.html 
[3] Communications Semiconductor and Optical 
Component Market Share, 2002 © 2003 Gartner Inc. 
[4] D. Pegler, D. Nevil, and A. Zeffertt, Linux ATM 
driver for MPC86xESAR, http://sourceforge.net/ 
projects/mpc860sar 
[5] SourceForge Linux ATM driver for MPC8260, 

http://atm8260.sourceforge.net 
[6] W. Almesberger, Linux ATM device driver in-
terface, Technical Report No. DI 96/178, Feb. 1996 
[7] W. Almesberger, ATM on Linux - The 3rd Year, 
4th Int. Linux Kongress 1997, March 1997, Würz-
burg, Germany (http://linux-atm.sourceforge.net). 
[8] P. Mackerras, PPP for Linux, release ppp-2.4.2, 
http://samba.org/ftp/unpacked/ppp 
[9] M. Blank, D. Monks, PPPoATM for Linux, 
http://www.sfgoth.com/~mitch/linux/atm/ pppoatm/ 
[10] A. Meliones, Engineering of ATM TDM Ac-
cess Applications for Linux MPC8260 Integrated 
Access Devices, 9th WSEAS CSCC Int. Conf. 
[11] A. Meliones, S. Spanos, and N. Zervos, Linux 
ATM Interface for PowerPC-based Network Em-
bedded Systems, WSEAS Transactions on Commu-
nications, Vol. 3, No. 2, April 2004, ISSN 1109-2742. 
[12] R. Atkinson, Default IP MTU for use over 
ATM AAL5, RFC-1626, 1994. 
[13] K. Tesink, Definitions of Managed Objects for 
ATM Management, RFC-2515, 1999. 


