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Abstract:-Support Vector Machines (SVMs) map inputs vectors nonlinearly into a high dimensional feature 
space and construct the optimum separating hyperplane in space to realize signal classification. Automatic 
classification of digital modulation signals plays an important role in communication applications such as an 
intelligent demodulator, interference identification and monitoring, so many investigations have been carried 
out in the past. Hilbert-Huang transformation (HHT) is a novel method of time frequency analysis for nonlinear 
and non-stationary data. In this paper, a new method based on SVM and HHT for classifying BFSK, BPSK and 
16QAM is proposed. The method can classify these signals well, and the correct classification rates are above 
88%. 
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1 Introduction  

Many studies on modulation type classification 
using a decision-theoretical or a statistical pattern 
recognition framework have been carried out [1,2,3]. 
SVM is a pattern recognition method. It has been 
used in speech recognition [4], digital recognition 
and etc. Being different from other learning 
machines, SVM [5-7] uses a structural risk 
minimization (SRM) principle, while others use an 
empirical risk minimization principle. It uses a kernel 
function for efficiently performing computations in 
high dimensional spaces and constructs nonlinear 

decision function to perform an optimal separating 
hyperplane in feature space.  

Hilbert-Huang transformation is a novel method 
of time frequency analysis for nonlinear and 
non-stationary data, which was developed by Huang 
et al in 1998 [8]. This technique is expected to 
decompose time-dependent data series into its 
individual characteristic oscillations with the 
so-called empirical mode decomposition (EMD). 
This procedure is capable of empirically 
disintegrating any complex set of data into a finite 
number of hidden embedded intrinsic mode functions 
(IMFs). It has been used in other fields of geophysics, 
e.g. to examine earthquake processes as well as for 
the determination of the dispersion curves of seismic 
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surface waves [9,10]. It has been used in tsunami 
research to detect earthquake generated water waves 
from data series recorded from bottom pressure 
transducers in the Northern Pacific [11]. 

In this paper a new method based on support 
vector machines (SVMs) and Hilbert-Huang 
transformation for classifying BFSK, BPSK and 
16QAM is proposed. 
 
 
2 Support Vector Machines 

Support vector machines are based on the 
structural risk minimization principle and 
Vapnik-Chervonenkis (VC) dimension from 
statistical learning theory developed by Vapnik, et 
al.[5] Traditional techniques for pattern recognition 
are based on the minimization of empirical risk, that 
is, on the attempt to optimize performance on the 
training set, SVMs minimize the structural risk to 
reach a better performance [4,5]. 

We can suppose that S is a set that is made up of 
points , which belong to ),2,1( Nixi = nR , 
These points are divided into two classes by an 
objective function ,   iy
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where and belong to different classes. We try 
to find a hyperplane to separate the two classes, and 
sort the same class in same side of the hyperplane as 
much as possible, and make the margin as far as 
possible. If can be separated linearly, there may 
be , to satisfy  
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Eqn (2) also can be represented by  
1)( ≥+⋅ bxwy ii                           (3) 

Parameters have determined a hyperplane, ),( bw
0=+⋅ bxw i                              (4) 

This plane is called the separating hyperplane. 
The problem of finding the optimal separating 
hyperplane is converted to an optimal problem as 
follows. 
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Lagrange multiplies, 
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with constraints, 
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When  cannot be separated linearly, 
introducing a nonnegative relax factor 

S

),( 1 Nξξξ = , Eqn (3) can be rewritten as 
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The optimal problem can be described as 
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Formula (8) is a general form of SVM. When 
 tends to infinite, formula (8) degenerates into a 

linear separating problem as formula (6). Replacing 
C

jiji xxyy ⋅ by , the optimal objective function 

turns to be the maximum 
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Obviously, this is a quadratic program. We can solve 
it by using the sequential minimal optimization 
(SMO) proposed by Platt [7]. When parameters 

 



iα and are obtained, the different classes can be 
distinguished by objective function  
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In most cases, discrimination is not linear in 
input space. A higher order function is introduced for 
mapping a nonlinearly separating problem to a 
linearly separating problem. Because the optimal 
problem mentioned above deals with inner product 
only, a kernel function can be constructed 
to substitute the inner product. 
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Two typical kernel functions are the polynomial 
kernel function as follows and the Gauss (Radial 
Basis Function) kernel function, defined by 
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A kernel function exists when the Mercer 
condition is satisfied. 

When SVM is used for classification, it works like 
a neural network, which classifies the different classes 
by inner product between the input vectors and support 
vectors. Inner product is substituted by kernel function 
operation.  
 
 
3  Feature Parameters 

Hilbert-Huang Transformation consists of two 
parts. Its key part is the so-called empirical mode 
decomposition (EMD), by which any complicated 
data set can be decomposed into finite  number of 
intrinsic mode functions(IMFs) . With Hilbert 
transform, the IMFs yield instantaneous frequencies 
as functions of time. The final presentation of the 
results is a time-frequency-energy distribution, 
designated as the Hilbert spectrum. Being different 
from Fourier decomposition and wavelet 
decomposition, EMD has no specified ”basis”. 

Its ”basis” is adaptively produced depending on the 
signal itself, which brings not only high 
decomposition efficiency but also sharp frequency 
and time localization. EMD is capable of adaptively 
decomposing signals into oscillating intrinsic 
components. An IMF is defined as a function that 
satisfies the following two conditions:  

(1) The number of extrema and thus the number 
of zero-crossings in the whole data series must be 
equal or differ at the most by one.  

(2) At any instant in time, the mean value of the 
envelope defined by the local maxima and the 
envelope of the local minima is zero. 

The first condition is similar to the narrow-band 
requirement for a stationary Gaussian process. It 
ensures that the local maxima of the data series are 
always positive and the local minima are negative, 
respectively. The second condition modifies a global 
requirement to a local one, and is necessary to ensure 
that the instantaneous frequency will not have 
unwanted fluctuations as induced by asymmetric 
waveforms. Regarding an arbitrary data series x(t), 
the IMFs are obtained, using the following 
algorithm:  
(1) Initialize: r0(t)=x(t), i=1  
(2) Extract the ith IMF:  

(a) Initialize: h0(t)=ri(t), k=1  
(b) Extract the local maxima and minima of h (t)  k−1

(c) Interpolate the local maxima and the local 
minima by a cubic spline to form upper and lower 
envelopes of hk−1(t)  

(d) Calculate the mean mk−1(t) of the upper and 
lower envelopes of hk−1(t)  

(e) Define: hk(t)=hk−1(t)−mk−1(t)  
(f) If IMF criteria are satisfied, then set 

IMFi(t)=hk(t) else go to (b) with k=k+1 
(3) Define: ri(t)=ri−1(t)−IMFi(t)  
(4) If ri(t) still has at least two extrema, then go to (2) 
with i=i+1; else the decomposition is completed and 
ri(t)  is the "residue" of x(t). 

At the beginning, the original data set x(t) is 
initialized as r0(t). This initialization can be 
characterized as the introduction to the outer loop to 

 



decompose the input signal into successive IMFs. 
The second inner loop is started to find every single 
IMF. Again this loop is initiated by an introductory 
process, setting ri(t) as the starting array for the inner 
loop. The first run of the inner loop, array hk−1(t) with 
k=1, corresponds to the original data series x(t). 
Extrema of the signal are revealed next. The minima 
and maxima are linked by a cubic spline to form an 
upper and lower envelope of x(t). Then the 
corresponding mean mk−1(t) is defined as the 
difference of upper and lower envelopes and 
subtracted from the initial data series hk−1(t) to 
represent a tentative first IMF hk(t). The conditions of 
defining an IMF are subsequently approved. Usually, 
after the first run, the criteria are not satisfied; so the 
inner loop is restarted from (b) by using hk(t) to 
initialize hk−1(t) with k=k+1. This so-called "sifting" 
process is repeated until the stopping criteria are 
fulfilled. Then the first IMF is disintegrated and the 
whole procedure is redone to sift additional IMF 
from the data series x(t) provided that the stopping 
criteria of the outer loop fail. The iterative 
decomposition process ends when the stopping 
criteria of the outer loop are satisfied so that r(t) is 
taken as the residue of x(t) which can also be 
interpreted as the trend of the signal. The original 
signal x(t) is then represented through the sum of a 
specified number of IMFs so that 
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where n is the total number of IMFs and r(t) is the 
residue of the sifting process. Due to this iterative 
procedure, none of these sifted IMFs is derived in the 
closed analytical form.  

In this paper three kinds of commonly used 
digital modulation signals 16QAM, BFSK and BPSK 
are classified. Being different from FSK and PSK 
signals, the amplitude of QAM signals is modulated, 
so its amplitude and power fluctuate largely from one 
symbol to another one. The amplitude of ideal FSK 
and PSK signals is a constant. The energy deviation 
of main component of IMFs of QAM signals is much 

larger than zero, while the counterpart of PSK and 
FSK signals is near to zero. So the characteristic 
parameter used for distinguishing QAM , FSK and 
PSK can be chosen as the energy variance of IMFs’ 
main component, denoted . 2

IMFδ
The signal is decomposed into a series of IMFs 

from the high-frequency components to the low 
frequency components, the first two IMFs have 
reflected the basic character. Calculating the Hilbert 
spectrum of first two components, we find that the 
spectrum of FSK signal has two main frequency 
components, while the spectrum of PSK and QAM 
signal is nearly a spectrum thread. So we chose the 
relative frequency spectrum width as the 
characteristic parameter, denoted . IMFB
 
 
4  Classification Results 

For samples of BPSK, BFSK and 16QAM, 
experiments have been done by SVM using Gauss 
kernel functions, linear kernel functions and their 
parallel combination and using the feature 
parameters and . The correct  classifi- 
cation rates are given in Table 1 and Table 2 at SNR 
20dB and 25dB.  

2
IMFδ IMFB

 
Table 1 Correct classification rates at SNR 20dB 

Signal 
Type 

Gauss 
kernel 

Linear 
kernel 

Parallel 
combination

BFSK 92.31% 92.31% 100% 
BPSK 61.54% 90.39% 88.46% 

16QAM 100% 100% 100% 
 

 
Table 2 Correct classification rates at SNR 25dB 

Signal 
Type 

Gauss 
kernel 

Linear 
kernel 

Parallel 
combination

BFSK 100% 100% 100% 
BPSK 86.54% 88.46% 88.46% 

16QAM 100% 100% 100% 
 

 



From Tables we can see that using the two 
characteristic parameters and the SVMs, we 
successfully identify these three kinds of digital 
modulated signals. The correct classification rates 
are above 88% at SNR 20dB. 
 
 
5 Conclusion 

In this paper, we proposed the method using 
SVMs and Hilbert-Huang Transformation for 
classifying modulation. Results show that better 
results can be obtained by using parallel combination 
of SVM using linear kernel and SVM using Gauss 
kernel, and correct classification rates is much better 
than 88% at SNR 20dB. 
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