
Reliability of Radial Basis Function - Neural Network Smart Antenna

MAJA SAREVSKA, BRATISLAV MILOVANOVIĆ, ZORAN STANKOVIĆ
Department of Telecommunications

University of Niš – Faculty of Electronic Engineering
Aleksandra Medvedeva 14, 18000, Niš

 SERBIA AND MONTENEGRO
 http://www.elfak.ni.ac.yu

Abstract: - This paper considers the problem of reliability of radial basis function neural network (RBFNN)
based smart antenna, applied for direction of arrival estimation. One of the main parameters in these networks
is the number of neurons in the hidden layer. Once this parameter is chosen another important issue is at which
level we can count on a proper functionality of the hidden layer, which is mainly determined by a proper
functionality of its neurons. After the presentation of the architecture and the basic concept of the RBFNN, we
will discuss the problem of the hidden layer dimension. This will provide necessary information for the
investigation of the reliability of these networks. Namely, we will assume a failure of some percentage of the
neurons in the hidden layer and we will present the resulting mean error increase. The results of computer
simulations will show us that the networks with less neurons in the hidden layer are more reliable. But when
we need more precise direction of arrival estimations we should use more neurons in the hidden layer and
more training samples. In this case the neurons in the hidden layer must be with long time of a proper
functionality, since the mean error increase is much larger if some of the neurons fail.

Key-Words: Neural networks, radial basis functions, neurons, mean error.

1 Introduction
 The field of artificial neural networks (NNs) has
made tremendous progress in the past 20 years in
terms of theory, algorithms, and applications.
Notably, the majority of real world NN applications
have involved the solution of difficult statistical
signal processing problems. Compared to
conventional signal processing algorithms that are
mainly based on linear model, artificial NNs offer
an attractive alternative by providing nonlinear
parametric models with universal approximation
power, as well as adaptive training algorithms. In
particular, the nonlinear nature of NNs, the ability of
NNs to learn from their environments in supervised
as well as unsupervised ways, as well as their
universal approximation property, make them highly
suited for solving difficult signal processing
problems.
 The concept of frequency reuse has been
successfully implemented in modern cellular
communication systems in order to increase the
system capacity. Extensive research has showed that
further improvement can be achieved by employing
adaptive arrays in the base stations. The main task in
these systems is Angle Of Arrival (AOA) estimation
in real time, after which the corresponding algorithm
for beamforming could be applied. This approach
together with Spatial Division Multiple Access
(SDMA) scheme will rapidly increase the system

capacity. Superresolution algorithms [1] have been
successfully applied to the problem of Direction Of
Arrival (DOA) estimation to locate radiating sources
with additive noise. One of the main disadvantages
of the superresolution algorithms is that they require
extensive computation and as a result they are
difficult to be implemented in real time. It has been
shown that NNs have the capacity to track sources
in real time. The paper [2] presents a generalization
of the algorithm presented in [3] in such a way that
the system would be able to track an arbitrary
number of sources with any angular separation
without prior knowledge of the number of sources.
The new approach presented in [2] provides a
dramatic reduction in the size of the training set
required to train each smaller network. One proposal
for larger reduction in network training time is to
apply Probabilistic Neural Network (PNN) in the
first stage [4]. In this way we do not perform
classical network training, but we just design the
appropriate network in the first stage, and for that
we need only couple of seconds. We should mention
that for the network in the first stage in [2] the time
that is necessary for network training is about 5
minutes.
 While there has been much success in developing
nonlinear NN models, in particular multilayer (ML)
networks trained by back-propagation, researchers,

and practitioners have found that, in some cases, it
can be difficult to train a ML network and obtain a
good performance without resorting to sophisticated
algorithms. The main reason it is difficult to train a
ML-NN is that such networks are nonlinear in the
parameters. This means that learning algorithms
typically use gradient descent approaches as a
means of solving the nonlinear optimization
problem. It is desirable, therefore, to obtain models,
which can overcome this problem of training.
RBFNNs [5,6] do offer a means of avoiding exactly
this problem. RBF networks are able to model data
in a local sense.
 A major result that has emerged in recent years,
with the growth of interest in NNs, is that multilayer
perceptron (MLP), with single hidden layer, is
capable of approximating any smooth nonlinear
input-output mapping to an arbitrary degree of
accuracy, provided that sufficient number of hidden
layer neurons is used. This often is referred as
universal approximation theorem. Also Park and
Sandberg [7,8] had proved the universal
approximation capabilities for RBFNNs. This
property ensures that RBF networks will have at
least the same theoretical capabilities as the well
known ML networks with sigmoidal nonlinearities.
The universal approximation property is shared by a
rather wide range of model types. This property
merely indicates that a generating function can be
approximated but generally says nothing about the
quality of the approximation. It is clear, however,
that for solving practical problems, we may be more
interested in which model is the best for a given
task. The property of best approximation has been
defined as an extension of the universal
approximation property. In a given set of models,
the model that most closely approximates the
generating function, by some defined distance
measure, is defined as having the property of best
approximation. Thus, the best approximation is an
important attribute in choosing a model type. It has
been proved that RBF networks have this property.
 There are many aspects analyzed in the literature
for the application of the NNs. One of the important
issues is the reliability of the NNs. This paper
considers exactly this problem: the reliability of the
RBFNNs applied for DOA estimation. Namely, an
important aspect is the number of the neurons in the
hidden layer, in order good performances to be
achieved. Our aim was to investigate the level of
degradation in the final performances of RBFNNs
when some percentage of the neurons in the hidden
layer is off-function.
 The organization of the paper is as follows:
Section 2 elaborates on the use of neural networks

for direction finding. Subsection 2.1 presents the
information about the number of neurons in the NN.
Subsection 2.2 presents the NN training algorithm.
Simulation results are presented in Section 3 and in
Section 4 some conclusive remarks are summarized.

 2 NN-Based Direction Finding
 Let observe a linear antenna array with M
elements, let U (U<M) is the number of narrowband
plane waves, centered at frequency ω0 impinging on
the array from directions {θ1 θ2 . . . θU}. Using
complex signal representation, the received signal in
the ith array element is:

() () Mitnetsx
U

m
i

Kij
mi

m ,...2,1,
1

)1(=+= ∑
=

−− (1)

where sm(t) is the signal of the m-th wave, ni(t) is the
noise signal received at the i-th sensor and

(mm c
dK θ)ω sin0= (2)

where d is the spacing between the elements of the
array, and c is the speed of the light in free-space. In
vector notation the output of the array is:

X(t)=AS(t)+N(t) (3)

where X(t), N(t), and S(t) are:
X(t)=[x1(t) x2(t) . . . xM(t)]T

N(t)=[n1(t) n2(t) . . . nM(t)]T (4)
S(t)=[s1(t) s2(t) . . . sU(t)]T

Fig.1 Block diagram of RBFNN with pre- and

postprocessing stages

In (3) A is the M × U steering matrix of the array
toward the direction of the incoming signals:

A=[a(θ1) a(θ2) . . . a(θU)] (5)

where a(θm) is:
a(θm) =[1 e-jKm e-j2Km . . . e-j(M-1)Km]T (6)

The received spatial correlation matrix R of the
received noisy signals can be estimated as:

R=E{X(t)X(t)H}=AE[S(t)SH(t)]AH+E[N(t)NH(t)] (7)
 Following the Fig.1 and the above expressions
we can conclude that the antenna array is
performing the mapping G: RU → CM from the
space of DOAs, {Θ=[θ1,θ2, . . . , θU]T} to the space
of sensor output {X(t)=[x1(t) x2(t) . . . xM(t)]T}. A
neural network is used to perform the inverse
mapping F: CM → RU. For this task a RBFNN is
used, instead of backpropagation neural network
because the second is slower in training. As can be
seen from Fig.1 the applied network generally has
three layers of nodes, one input layer, one output,
and between them there is one hidden layer of
nodes. There is a sample data preprocessing block
which will transform the input values in appropriate
form that could be applied at the input of the NN.
After the output layer there is postprocessing block,
which will transform the outputs in appropriate form
in order to give the estimated DOAs. In [2] the
algorithms for detection and estimation stage are
same, the difference is only in the number of nodes
in the output layer. Namely, the number of the nodes
in the output layer of the first stage (detection) is
one (there is a signal gives one, and no signal gives
0), and the number of the nodes in the output layer
of the second stage is determined by the angular
resolution of the algorithm and the width of the
corresponding sector.
 There are a lot of learning strategies that have
appeared in the literature to train RBFNN. The one
used in [2] was introduced in [9], where an
unsupervised learning algorithm (such as K-means
[6,10]) is initially used to identify the centers of the
Gaussian functions used in the hidden layer. The
standard deviation of the Gaussian function of a
certain mean is the average distance to the first few
nearest neighbors of the means of the other Gaussian
functions. This procedure allows us to identify the
weights (means and standard deviations of the
Gaussian functions) from the input to the hidden
layer. The weights from the hidden layer to the
output layer are estimated by supervised learning
known as delta rule, applied on single layer
networks [6]. With this procedure, for training we
need 5min in detection stage and about 15min in
estimation stage. An alternative is instead of using
the same neural networks in both stages, to use
different neural network in the first stage. The
reason for this is the fact that the task of signal
detection is a vector classification problem. Any

input vector should be classified as 0 (there is NO
signal in the corresponding sector) or 1 (there IS a
signal in the corresponding sector). For this task an
appropriate neural network is Probabilistic Neural
Network (PNN), which is used in [4]. In our paper
we are going to use the RBFNN, since we are going
to investigate the reliability of the second stage
NNs.
 The main capability of NNs is their ability of
generalization. The question is what types of
generalization our NN is supposed to be able to
perform, in order to use less training samples that
we can. Although the set from which the training
samples are picked for training in the detection stage
is larger than that for DOA estimation stage, we will
briefly analyze the case for DOA estimation stage,
because of its higher difficulty in the sense of
generalization (the detection stage is simple vector
classification problem and generalization is much
easier to be achieved). Let suppose that we have one
user that is moving straightforward in some
direction. We choose the training samples,
according to eq. (7) with some angular step, let say
∆θ1 degrees. The first type of generalization that the
NN is supposed to perform is that after it is trained,
it is expected to give satisfactory performance for
samples picked with angular step smaller than ∆θ1
degrees. Now, let say we have two users moving in
parallel in some direction (this choice of parallel and
linear moving is made for clear results presentation
without loss of generality), and we chose the
training samples for angular separation between the
users of ∆θ2 degrees. The second type of
generalization that we expect our NN to perform,
after it is trained, is to give satisfactory
performances for some other angular separation
between the users (smaller than ∆θ2). Also, as third
we can train the network for N1 and N2 users and we
are expecting from the NN to give satisfactory
performances for NK users, where N1≤NK≤N2.
 Additionally we should have in mind that we use
noisy training samples, which means that in all cases
the network should be able to “learn” the noise
influence on the signal. Using binary signals, the
network should also “understand” the nature of this
signal. The interested reader can read more about
this issue in [11]. Our results showed the great
potential of this type of neural network for DOA
estimation in the application of the antenna arrays.
The main further interest is to investigate the ability
of the network to perform all the types of
generalization in the same time. Namely, from the
results [11] it is obvious that the network is capable
of doing it, but the main problem is the ill-

conditioning of the system determinant of the output
linear layer, which occurs when the number of
training samples is large. The point is that we must
use much more training samples in order to achieve
all types of generalization at once, and to avoid the
ill-conditioning in the same time.

2.1 Number of Neurons in NN
 The input data of RBFNN is the matrix R, which
is the correlation matrix of the antenna array
outputs, rather than the antenna outputs themselves.
The dimensionality of the input samples determines
the number of the neurons in the input layer, and the
transformation of the antenna array outputs to input
samples of the NN, as showed in Fig.1, is performed
in the block “sample data preprocessing”. The
dimensionality of R is M×M, and 2M2 could be the
dimensionality of the input samples (since the NN
cannot deal with complex numbers). But in order to
simplify the total system, an interesting point is to
reduce the number of input neurons in the NN,
which means not to use all the elements of the
matrix R. Using the fact that the matrix Real{R} is
symmetric, we could use only the upper triangular
part of Real{R}, which gives M(M+1)/2 elements.
The diagonal elements of matrix Imaginary{R} are
zeros and the absolute values of the elements of the
upper triangular and lower triangular matrix, are
same. This lead us to conclusion that we should use
only the elements of the upper triangular part of the
matrix Imaginary{R} (without the diagonal
elements), which gives M(M-1)/2 elements. So, the
dimensionality of the input layer (sum of the number
of imaginary parts and real parts of the elements),
should be M2, which is actually the number of
neurons in the input layer. Just for comparison the
number of neurons in the input layer in [2] is
M(M+1), thus the input redundancy is decreased. In
order to achieve satisfactory performances the
number of neurons in the hidden layer should be
equal or larger than the number of neurons in the
input layer [12]. The number of neurons in the
output layer, for DOA estimation stage, is
determined by the angle width of the corresponding
sector and the specified angular resolution of the
network [2]. The outputs of the output layer are
processed in the “postprocessing” block in order to
give the final outputs, which are the DOAs.
 The fact that many training samples, for DOA
estimation problem, are available is very satisfactory
in the sense of providing the necessary
generalization. Unfortunately, we are dealing with
Single Layer Perceptron Neural Network (SLP-NN)
[12] at the output layer, which can deal and find a

solution only for limited number of training
samples. We have performed an extensive research
for the capabilities and power for generalization of
the output layer, and here, briefly we can expose
some of our conclusions, important for this paper.
 As we have mentioned earlier we are dealing
with SLP-NN at the output layer, since the
parameters of the hidden layer are determined with
unsupervised learning. This means that we are
attempting to approximate the input-output mapping
for DOA estimation with number of linear
equations. For example, if the number of the
neurons in the hidden layer is L, and if the number
of training samples is N, then the NN should deal
with N linear equations with L+1 unknowns
(including the bias for the node in the output layer),
where the coefficients of the equations are the
outputs of the hidden layer, and the unknown
variables that should be estimated by the NN are the
weights from the hidden to the output layer
including the bias. NN with single linear layer is not
much powerful for this type of problems, but it is
the hidden layer that is providing the successful
application of this architecture. Namely, the hidden
layer is transforming the input samples into
appropriate form and usually in higher
dimensionality, so as to provide successful
generalization. The question that should be
answered in our problem is: how much neurons we
should use in the hidden layer? We have concluded
that the number of neurons in the hidden layer
should be as large as possible but it doesn’t have to
be larger then M2 if we solve the IC appearance [12],
in order to reduce the cost of the total system.
 The solution for IC appearance is an additional
problem, which overcomes the scope of this paper.
Our task in this paper is steered to the reliability of
the NN depending on the number of neurons in the
hidden layer, since the number of neurons in the
input and output layer are determined, as previously
explained. It is obvious that if we use larger number
of neurons in the hidden layer we will get much
powerful network, but the precise value for that
number is hard to be determined. The main
limitation could be the cost of the total system,
namely, we are trying to use as less as possible
neurons. After we determine this value, we are
interested in the performance degradation after the
failure of some portion of the neurons in the hidden
layer.
 We should stress that this case is not the same as
we are using less neurons than determined in the
start, since using less neurons is not the same as a
failure of some neurons in the hidden layer!

2.2 NN training algorithm
 As earlier mentioned we are using hybrid
learning method. That means we use unsupervised
learning for the parameters in the hidden layer: the
centers and the variances of the Gaussian functions,
and we use supervised learning for the weights from
the hidden layer to the output layer. Namely, for
each neuron in the hidden layer there is one
Gaussian function associated to it, determined by its
center vi and its variance σi. K-means clustering
algorithm is as follows [12]:
Step1: Choose L initial cluster centers v1(1),
v2(1),…vL(1) from the training set.
Step2: At the nth iterative step distribute the input
patterns {x(p), p=1÷N, among the L custer domains,
using the relation:
 x(p)∈Sj(t) if ||x(p)-vj(t)|| < ||x(p)-vk(t)|| (8)
for all k=1,2,…L, and k≠j, where Sj(t) denotes the
set of input patterns, whose center is vj(t).
Step3: From the results in Step2, compute the new
cluster centers vj(t+1), j=1,2,…,L. The new cluster
centers are given by the rule:

 () ∑
∈

==+
)(x

j L1,2,..., x1v
tSj j

j ,
N

1t

(9)
where Nj is the number of input patterns in Sj(t). The
cluster centers defined by (9) guarantee that the sum
of the squared distances from all the points in Sj(t) to
the new cluster center is minimized.
Step4: If vj(t+1)= vj(t) for j=1,2,…,L, the algorithm
has converged and the procedure is terminated.
Otherwise go to Step2.
 Once the centers are identified, the variances of
the Gaussian functions are chosen to be equal to the
mean distance of every Gaussian center from its few
(usually from 3 to 7) neighboring Gaussian centers.
 When the centers and variances of the Gaussian
functions are chosen, we are left with the task of
choosing the interconnection weights from the
hidden layer to the output linear layer. These
interconnection weights are chosen in a way that
minimizes the error function:

 (10) () ()∑
=

=
N

1p

pEE ii ww

where i is the index of the neuron in the output
layer, and wi are the weights. The weights are found
by following the well known gradient descent
procedure [12], which modifies the weights by an
amount proportional to the negative gradient of
E(wi). The error function can also be written as:

 () () ()[∑
=

−=
N

1p
ii pypdE 2

i 2
1w] (11)

where di(p) is the actual output (the target) and yi(p)
is gained output. Further this expression can be
written as:

 () () ()∑ ∑
= =

⎥
⎦

⎤
⎢
⎣

⎡
−=

N

1p

L

j
jiji puwpdE

2

1
i 2

1w (12)

where

 () ()
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= ∑

=

2

1

2

2
1exp

M

k j

jkk
j

vpx
pu

σ
 (13)

 Let observe two networks with number of
neurons in the hidden layer N1 and N2, where N1>N2.
By training algorithm we could achieve same value
for E. But knowing the fact that network with larger
number of neurons has better generalization
properties, will lead us to a conclusion that the first
network will give smaller average errors at the
output. Namely the value of E estimated for testing
samples will be smaller for the network with larger
number of neurons in the hidden layer. Let ΩOFF is
the set that contains the indexes of neurons that are
off function and ΩON is the set of indexes of neurons
that are on function. The error function will be:

 () () ()∑ ∑
= Ω∈

⎥
⎦

⎤
⎢
⎣

⎡
−=

N

1p j
jiji

ON

puwpdE
2

i 2
1w (14)

since uj(p) for j∈ΩOFF is zero. In this case:

 () ()
ON

M

k j

jkk
j j

vpx
pu Ω∈

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= ∑

=
 ,

2
1exp

2

1

2

σ
 (15)

 Observing the expression (14) it is obvious that
when some neurons are off function the value of E
will be increased, since di(p) will largely differ from
yi(p). As the set ΩOFF is becoming larger for both
networks, the part di(p) will be more dominant in
(14). This lead us to a conclusion that in this case
the both networks will give similar errors at the
output (since di(p) is same for both networks), and
better generalization capabilities of the first network
will be lost. Knowing the fact that the first network
gives smaller errors when all neurons are on
function, larger portion of neurons that are off
function will lead to larger relative error increase for
the network with larger number of neurons in the
hidden layer.
 Computer simulation results in the next section
will confirm that neural networks that contain less
neurons in the hidden layer are more reliable than
those who contain more neurons.

3 Computer Simulations and Results
 In computer simulations we were using a linear
antenna array of 12 elements placed at mutual
distance of one half of a wavelength, and Signal to
Noise Ratio (SNR) of various values. The number of
users whose signals were tracked was chosen to be
4, moving at mutual distance of 2°, in the sector
wide 10°. In the training phase the angle step of
training samples was 1°, and in the testing phase the
angle step was 0.25° (first type of generalization
explained in section 2). The number of neurons in
the input level is 144, and the number of neurons in
the output level was chosen to be 6 (angle resolution
of 2° [2]). The achieved Mean Square Error (MSE)
of the NN was chosen to be around 10-3. Parameter
that shows the quality of system performances is the
mean error of DOA estimation for one of the users.
The neurons that were off function were randomly
chosen, and there were performed 50 trials of
randomly chosen failed neurons of 3% to 30% with
step of 3%.
 As a first example we are going to see the results
gained for SNR=10dB, and for number of neurons in
the hidden layer L=144 and L=175, and for number
of training samples N=145, N=172, and N=176.
 Fig.2 presents the case when we have used
L=144 neurons in the hidden layer and N=145
training samples. The straight line is the mean error
for estimated DOA, 0.23°, when all neurons are in
function. As we can see, as the percentage of failed
neurons increases, the mean error for DOA is
increasing from 0.234° (for 3% of failed neurons) to
around 0.36° (for 30% of failed neurons), which
corresponds to relative error increase from 1.7% to
56%.
 Fig.3 presents the case when we have used
L=144 neurons in the hidden layer and N=172
training samples. As is expected the mean error for
DOA estimation when all neurons are in function is
decreased and its value is 0.185°. The relative error
increase is from 13.5% (for 3% of failed neurons) to
67% (for 30% of failed neurons).
 Fig.4 presents the case when we have used
L=175 neurons in the hidden layer and N=176. As is
expected the mean error for DOA estimation when
all neurons are in function is decreased and its value
is 0.12°. The relative error increase is from 33% (for
3% of failed neurons) to 158% (for 30% of failed
neurons, the error is more than doubled).
 Observing the relative error increases we can
easily conclude that the reliability of the network is
much better when L and M are smaller. But the
reason for that is that for larger L and M the mean
error, when all neurons are in function, is much

s
e

Fig.2 Mean error of DOA depending on the

percentage of failed neurons for L=144 and N=145
(SNR=10 dB)

Fig.3 Mean error of DOA depending on the

percentage of failed neurons for L=144 and N=172
(SNR=10 dB)

Fig.4 Mean error of DOA depending on the

percentage of failed neurons for L=175 and N=176
(SNR=10 dB)
maller. So, when we need very precise DOA
stimation we should use larger values of L and M,

but we should use neurons with long time of well
functioning.
 As we have mentioned, we have used 50 trials
for randomly chosen failed neurons. The smaller
error for larger percentage of failed neurons (Fig.3)
lead us to a conclusion that on the final mean error,
except the percentage of failed neurons, there is an
influence of the positions of the failed neurons in the
hidden layer! This issue needs further deep analyze.
 As another example we are going to present
some results for larger value of SNR.
 Fig.5 is presenting the results gained for the case
when SNR=20 dB. We were using L=144 neurons in
the hidden layer and the number of training samples
was N=145. From the figure we can conclude that
the relative error increase is from 5% (for 3% of
failed neurons) to 41% (for 30% of failed neurons).
This example and including many other results that
we have analyzed, lead us to a conclusion that the
value of SNR has not much influence on the mean
error increases.
 Also we should mention that for all cases we
have used appropriate values for some parameters
for RBFs, like for example the number of
neighboring neurons taken into account while
estimating the variances for RBFs, or appropriate
mse of the NN, in order to gain comparable results.

4 Conclusion
 We have presented the architecture of RBFNNs
based smart antenna for DOA estimation problem in
order to investigate the reliability of the hidden layer
applied in the network.
 Using computer simulation results we have
showed that the networks with less neurons in the
hidden layer are more reliable than those with larger

number of neurons. But we have concluded that
when we need more precise DOA estimations we
should use more neurons in the hidden layer and
more training samples. In this case we should be
aware of the large performance degradation in the
case if some percentage of the neurons fail.

Fig.5 Mean error of DOA depending on the
percentage of failed neurons for L=144 and N=145

(SNR=20 dB)

References:
[1] R.O. Schmidt, “Multiple emitter location and

signal parameter estimation”, IEEE Trans.
Antennas Propagat., Vol.34, pp. 276-280,
March 1986.

[2] A.H. El Zooghby, C.G. Christodoulou, and M.
Georgiopoulos, “A neural network-based smart
antenna for multiple source tracking”, IEEE
Trans. Antenna Propagat., Vol. 48, No.5, May
2000.

[3] A.H. El Zooghby, C.G. Christodoulou, and M.
Georgiopoulos, “Performance of radial basis
function networks for direction of arrival
estimation with antenna arrays”, IEEE Trans.
Antenna Propagat., Vol. 45, pp. 1611-1617,
Nov. 1997.

[4] M. Sarevska, B. Milovanović, and Z.
Stanković, “Alternative Signal Detection For
Neural Network-Based Smart Antenna”, IEEE
Conference NEUREL’04, Belgrade, Sept. 2004.

[5] Yu Hen Hu, and Jenq-Neng Hwang,
“Handbook of Neural Network Signal
Processing”, CRC Press LLC, Boca Raton
Florida, 2001.

[6] M. M. Gupta, L. Jin, and N. Homma, “Static
and Dynamic Neural Networks”, A John Wiley
& Sons, Inc., Publication, 2003.

[7] Park, J., and I. W. Sandberg, “Universal
Approximation Using Radial Basis Function
Networks”, Neural Com, Vol.3, 1991, pp. 246-
257.

[8] Park, J., and I. W. Sandberg, “Approximation
and Radial Basis Function Networks”, Neural
Computation, Vol. 5, 1993, pp. 305-316.

[9] T.J. Moody and C.J. Darken, “Fast learning in
networks of locally tuned processing units”,
Neural Computat., Vol.1, pp. 281-294, 1989.

[10] J.T. Tou and R.C. Gonzales, Pattern
recognition Principles. Reading, MA: Addison
Wesley, 1976.

[11] M. Sarevska, B. Milovanović, and Z.
Stanković, “Generalization Capabilities of
Neural Network-Based Smart Antenna for
DOA Estimation”, Conference TELFOR’04,
Belgrade, November 2004.

[12] C.G. Christodoulou, and M. Georgiopoulos,
“Applications of Neural networks in
Electromagnetics”, Artech House, Inc., 2001

	2 NN-Based Direction Finding

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

