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Abstract: - This paper considers the problem of reliability of radial basis function neural network (RBFNN) 
based smart antenna, applied for direction of arrival estimation. One of the main parameters in these networks 
is the number of neurons in the hidden layer. Once this parameter is chosen another important issue is at which 
level we can count on a proper functionality of the hidden layer, which is mainly determined by a proper 
functionality of its neurons. After the presentation of the architecture and the basic concept of the RBFNN, we 
will discuss the problem of the hidden layer dimension. This will provide necessary information for the 
investigation of the reliability of these networks. Namely, we will assume a failure of some percentage of the 
neurons in the hidden layer and we will present the resulting mean error increase. The results of computer 
simulations will show us that the networks with less neurons in the hidden layer are more reliable. But when 
we need more precise direction of arrival estimations we should use more neurons in the hidden layer and 
more training samples. In this case the neurons in the hidden layer must be with long time of a proper 
functionality, since the mean error increase is much larger if some of the neurons fail. 
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1   Introduction  
     The field of artificial neural networks (NNs) has 
made tremendous progress in the past 20 years in 
terms of theory, algorithms, and applications. 
Notably, the majority of real world NN applications 
have involved the solution of difficult statistical 
signal processing problems. Compared to 
conventional signal processing algorithms that are 
mainly based on linear model, artificial NNs offer 
an attractive alternative by providing nonlinear 
parametric models with universal approximation 
power, as well as adaptive training algorithms. In 
particular, the nonlinear nature of NNs, the ability of 
NNs to learn from their environments in supervised 
as well as unsupervised ways, as well as their 
universal approximation property, make them highly 
suited for solving difficult signal processing 
problems. 
     The concept of frequency reuse has been 
successfully implemented in modern cellular 
communication systems in order to increase the 
system capacity. Extensive research has showed that 
further improvement can be achieved by employing 
adaptive arrays in the base stations. The main task in 
these systems is Angle Of Arrival (AOA) estimation 
in real time, after which the corresponding algorithm 
for beamforming could be applied. This approach 
together with Spatial Division Multiple Access 
(SDMA) scheme will rapidly increase the system 

capacity. Superresolution algorithms [1] have been 
successfully applied to the problem of Direction Of 
Arrival (DOA) estimation to locate radiating sources 
with additive noise. One of the main disadvantages 
of the superresolution algorithms is that they require 
extensive computation and as a result they are 
difficult to be implemented in real time. It has been 
shown that NNs have the capacity to track sources 
in real time. The paper [2] presents a generalization 
of the algorithm presented in [3] in such a way that 
the system would be able to track an arbitrary 
number of sources with any angular separation 
without prior knowledge of the number of sources.  
The new approach presented in [2] provides a 
dramatic reduction in the size of the training set 
required to train each smaller network. One proposal 
for larger reduction in network training time is to 
apply Probabilistic Neural Network (PNN) in the 
first stage [4]. In this way we do not perform 
classical network training, but we just design the 
appropriate network in the first stage, and for that 
we need only couple of seconds. We should mention 
that for the network in the first stage in [2] the time 
that is necessary for network training is about 5 
minutes. 
     While there has been much success in developing 
nonlinear NN models, in particular multilayer (ML) 
networks trained by back-propagation, researchers, 



and practitioners have found that, in some cases, it 
can be difficult to train a ML network and obtain a 
good performance without resorting to sophisticated 
algorithms. The main reason it is difficult to train a 
ML-NN is that such networks are nonlinear in the 
parameters. This means that learning algorithms 
typically use gradient descent approaches as a 
means of solving the nonlinear optimization 
problem. It is desirable, therefore, to obtain models, 
which can overcome this problem of training. 
RBFNNs [5,6] do offer a means of avoiding exactly 
this problem. RBF networks are able to model data 
in a local sense. 
     A major result that has emerged in recent years, 
with the growth of interest in NNs, is that multilayer 
perceptron (MLP), with single hidden layer, is 
capable of approximating any smooth nonlinear 
input-output mapping to an arbitrary degree of 
accuracy, provided that sufficient number of hidden 
layer neurons is used. This often is referred as 
universal approximation theorem. Also Park and 
Sandberg [7,8] had proved the universal 
approximation capabilities for RBFNNs. This 
property ensures that RBF networks will have at 
least the same theoretical capabilities as the well 
known ML networks with sigmoidal nonlinearities. 
The universal approximation property is shared by a 
rather wide range of model types. This property 
merely indicates that a generating function can be 
approximated but generally says nothing about the 
quality of the approximation. It is clear, however, 
that for solving practical problems, we may be more 
interested in which model is the best for a given 
task. The property of best approximation has been 
defined as an extension of the universal 
approximation property. In a given set of models, 
the model that most closely approximates the 
generating function, by some defined distance 
measure, is defined as having the property of best 
approximation. Thus, the best approximation is an 
important attribute in choosing a model type. It has 
been proved that RBF networks have this property.  
     There are many aspects analyzed in the literature 
for the application of the NNs. One of the important 
issues is the reliability of the NNs. This paper 
considers exactly this problem: the reliability of the 
RBFNNs applied for DOA estimation. Namely, an 
important aspect is the number of the neurons in the 
hidden layer, in order good performances to be 
achieved. Our aim was to investigate the level of 
degradation in the final performances of RBFNNs 
when some percentage of the neurons in the hidden 
layer is off-function. 
     The organization of the paper is as follows: 
Section 2 elaborates on the use of neural networks 

for direction finding. Subsection 2.1 presents the 
information about the number of neurons in the NN. 
Subsection 2.2 presents the NN training algorithm. 
Simulation results are presented in Section 3 and in 
Section 4 some conclusive remarks are summarized. 
 
 
 2   NN-Based Direction Finding 
     Let observe a linear antenna array with M 
elements, let U (U<M) is the number of narrowband 
plane waves, centered at frequency ω0 impinging on 
the array from directions {θ1 θ2 . . . θU}. Using 
complex signal representation, the received signal in 
the ith array element is:  

( ) ( ) Mitnetsx
U

m
i

Kij
mi

m ,...2,1,
1

)1( =+= ∑
=

−−           (1) 

where sm(t) is the signal of the m-th wave, ni(t) is the 
noise signal received at the i-th sensor and 
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where d is the spacing between the elements of the 
array, and c is the speed of the light in free-space. In 
vector notation the output of the array is: 

X(t)=AS(t)+N(t)                           (3) 

where X(t), N(t), and S(t) are: 
X(t)=[ x1(t) x2(t) . . . xM(t)]T

N(t)=[ n1(t) n2(t) . . . nM(t)]T                (4) 
S(t)=[ s1(t) s2(t) . . . sU(t)]T

 

 
Fig.1 Block diagram of RBFNN with pre- and 

postprocessing stages 

In (3) A is the M × U steering matrix of the array 
toward the direction of the incoming signals: 

A=[a(θ1) a(θ2) . . . a(θU)]                       (5) 



where a(θm) is: 
a(θm) =[1 e-jKm e-j2Km . . . e-j(M-1)Km]T                 (6) 

The received spatial correlation matrix R of the 
received noisy signals can be estimated as: 

R=E{X(t)X(t)H}=AE[S(t)SH(t)]AH+E[N(t)NH(t)] (7) 
     Following the Fig.1 and the above expressions 
we can conclude that the antenna array is 
performing the mapping G: RU → CM from the 
space of DOAs, {Θ=[θ1,θ2, . . . , θU]T} to the space 
of sensor output {X(t)=[x1(t) x2(t) . . . xM(t)]T}. A 
neural network is used to perform the inverse 
mapping F: CM  → RU. For this task a RBFNN is 
used, instead of backpropagation neural network 
because the second is slower in training. As can be 
seen from Fig.1 the applied network generally has 
three layers of nodes, one input layer, one output, 
and between them there is one hidden layer of 
nodes. There is a sample data preprocessing block 
which will transform the input values in appropriate 
form that could be applied at the input of the NN. 
After the output layer there is postprocessing block, 
which will transform the outputs in appropriate form 
in order to give the estimated DOAs. In [2] the 
algorithms for detection and estimation stage are 
same, the difference is only in the number of nodes 
in the output layer. Namely, the number of the nodes 
in the output layer of the first stage (detection) is 
one (there is a signal gives one, and no signal gives 
0), and the number of the nodes in the output layer 
of the second stage is determined by the angular 
resolution of the algorithm and the width of the 
corresponding sector. 
     There are a lot of learning strategies that have 
appeared in the literature to train RBFNN. The one 
used in [2] was introduced in [9], where an 
unsupervised learning algorithm (such as K-means 
[6,10]) is initially used to identify the centers of the 
Gaussian functions used in the hidden layer. The 
standard deviation of the Gaussian function of a 
certain mean is the average distance to the first few 
nearest neighbors of the means of the other Gaussian 
functions. This procedure allows us to identify the 
weights (means and standard deviations of the 
Gaussian functions) from the input to the hidden 
layer. The weights from the hidden layer to the 
output layer are estimated by supervised learning 
known as delta rule, applied on single layer 
networks [6]. With this procedure, for training we 
need 5min in detection stage and about 15min in 
estimation stage. An alternative is instead of using 
the same neural networks in both stages, to use 
different neural network in the first stage. The 
reason for this is the fact that the task of signal 
detection is a vector classification problem. Any 

input vector should be classified as 0 (there is NO 
signal in the corresponding sector) or 1 (there IS a 
signal in the corresponding sector). For this task an 
appropriate neural network is Probabilistic Neural 
Network (PNN), which is used in [4]. In our paper 
we are going to use the RBFNN, since we are going 
to investigate the reliability of the second stage 
NNs. 
     The main capability of NNs is their ability of 
generalization. The question is what types of 
generalization our NN is supposed to be able to 
perform, in order to use less training samples that 
we can. Although the set from which the training 
samples are picked for training in the detection stage 
is larger than that for DOA estimation stage, we will 
briefly analyze the case for DOA estimation stage, 
because of its higher difficulty in the sense of 
generalization (the detection stage is simple vector 
classification problem and generalization is much 
easier to be achieved). Let suppose that we have one 
user that is moving straightforward in some 
direction. We choose the training samples, 
according to eq. (7) with some angular step, let say 
∆θ1 degrees. The first type of generalization that the 
NN is supposed to perform is that after it is trained, 
it is expected to give satisfactory performance for 
samples picked with angular step smaller than ∆θ1 
degrees. Now, let say we have two users moving in 
parallel in some direction (this choice of parallel and 
linear moving is made for clear results presentation 
without loss of generality), and we chose the 
training samples for angular separation between the 
users of ∆θ2 degrees. The second type of 
generalization that we expect our NN to perform, 
after it is trained, is to give satisfactory 
performances for some other angular separation 
between the users (smaller than ∆θ2). Also, as third 
we can train the network for N1 and N2 users and we 
are expecting from the NN to give satisfactory 
performances for NK users, where N1≤NK≤N2.        
     Additionally we should have in mind that we use 
noisy training samples, which means that in all cases 
the network should be able to “learn” the noise 
influence on the signal. Using binary signals, the 
network should also “understand” the nature of this 
signal. The interested reader can read more about 
this issue in [11]. Our results showed the great 
potential of this type of neural network for DOA 
estimation in the application of the antenna arrays. 
The main further interest is to investigate the ability 
of the network to perform all the types of 
generalization in the same time. Namely, from the 
results [11] it is obvious that the network is capable 
of doing it, but the main problem is the ill-



conditioning of the system determinant of the output 
linear layer, which occurs when the number of 
training samples is large. The point is that we must 
use much more training samples in order to achieve 
all types of generalization at once, and to avoid the 
ill-conditioning in the same time. 
 
 
2.1 Number of Neurons in NN  
     The input data of RBFNN is the matrix R, which 
is the correlation matrix of the antenna array 
outputs, rather than the antenna outputs themselves. 
The dimensionality of the input samples determines 
the number of the neurons in the input layer, and the 
transformation of the antenna array outputs to input 
samples of the NN, as showed in Fig.1, is performed 
in the block “sample data preprocessing”. The 
dimensionality of R is M×M, and 2M2 could be the 
dimensionality of the input samples (since the NN 
cannot deal with complex numbers). But in order to 
simplify the total system, an interesting point is to 
reduce the number of input neurons in the NN, 
which means not to use all the elements of the 
matrix R. Using the fact that the matrix Real{R} is 
symmetric, we could use only the upper triangular 
part of Real{R}, which gives M(M+1)/2 elements. 
The diagonal elements of matrix Imaginary{R} are 
zeros and the absolute values of the elements of the 
upper triangular and lower triangular matrix, are 
same. This lead us to conclusion that we should use 
only the elements of the upper triangular part of the 
matrix Imaginary{R} (without the diagonal 
elements), which gives M(M-1)/2 elements. So, the 
dimensionality of the input layer (sum of the number 
of imaginary parts and real parts of the elements), 
should be M2, which is actually the number of 
neurons in the input layer. Just for comparison the 
number of neurons in the input layer in [2] is 
M(M+1), thus the input redundancy is decreased. In 
order to achieve satisfactory performances the 
number of neurons in the hidden layer should be 
equal or larger than the number of neurons in the 
input layer [12]. The number of neurons in the 
output layer, for DOA estimation stage, is 
determined by the angle width of the corresponding 
sector and the specified angular resolution of the 
network [2]. The outputs of the output layer are 
processed in the “postprocessing” block in order to 
give the final outputs, which are the DOAs.  
     The fact that many training samples, for DOA 
estimation problem, are available is very satisfactory 
in the sense of providing the necessary 
generalization. Unfortunately, we are dealing with 
Single Layer Perceptron Neural Network (SLP-NN) 
[12] at the output layer, which can deal and find a 

solution only for limited number of training 
samples. We have performed an extensive research 
for the capabilities and power for generalization of 
the output layer, and here, briefly we can expose 
some of our conclusions, important for this paper.  
     As we have mentioned earlier we are dealing 
with SLP-NN at the output layer, since the 
parameters of the hidden layer are determined with 
unsupervised learning. This means that we are 
attempting to approximate the input-output mapping 
for DOA estimation with number of linear 
equations. For example, if the number of the 
neurons in the hidden layer is L, and if the number 
of training samples is N, then the NN should deal 
with N linear equations with L+1 unknowns  
(including the bias for the node in the output layer), 
where the coefficients of the equations are the 
outputs of the hidden layer, and the unknown 
variables that should be estimated by the NN are the 
weights from the hidden to the output layer 
including the bias. NN with single linear layer is not 
much powerful for this type of problems, but it is 
the hidden layer that is providing the successful 
application of this architecture. Namely, the hidden 
layer is transforming the input samples into 
appropriate form and usually in higher 
dimensionality, so as to provide successful 
generalization. The question that should be 
answered in our problem is: how much neurons we 
should use in the hidden layer? We have concluded 
that the number of neurons in the hidden layer 
should be as large as possible but it doesn’t have to 
be larger then M2 if we solve the IC appearance [12], 
in order to reduce the cost of the total system. 
     The solution for IC appearance is an additional 
problem, which overcomes the scope of this paper. 
Our task in this paper is steered to the reliability of 
the NN depending on the number of neurons in the 
hidden layer, since the number of neurons in the 
input and output layer are determined, as previously 
explained. It is obvious that if we use larger number 
of neurons in the hidden layer we will get much 
powerful network, but the precise value for that 
number is hard to be determined. The main 
limitation could be the cost of the total system, 
namely, we are trying to use as less as possible 
neurons. After we determine this value, we are 
interested in the performance degradation after the 
failure of some portion of the neurons in the hidden 
layer.  
     We should stress that this case is not the same as 
we are using less neurons than determined in the 
start, since using less neurons is not the same as a 
failure of some neurons in the hidden layer!  
 



2.2 NN training algorithm  
     As earlier mentioned we are using hybrid 
learning method. That means we use unsupervised 
learning for the parameters in the hidden layer: the 
centers and the variances of the Gaussian functions, 
and we use supervised learning for the weights from 
the hidden layer to the output layer. Namely, for 
each neuron in the hidden layer there is one 
Gaussian function associated to it, determined by its 
center vi and its variance σi. K-means clustering 
algorithm is as follows [12]: 
Step1: Choose L initial cluster centers v1(1), 
v2(1),…vL(1) from the training set. 
Step2: At the nth iterative step distribute the input 
patterns {x(p), p=1÷N, among the L custer domains, 
using the relation:  
          x(p)∈Sj(t) if ||x(p)-vj(t)|| < ||x(p)-vk(t)||        (8) 
for all k=1,2,…L, and k≠j, where Sj(t) denotes the 
set of input patterns, whose center is vj(t).   
Step3: From the results in Step2, compute the new 
cluster centers vj(t+1), j=1,2,…,L. The new cluster 
centers are given by the rule: 
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where Nj is the number of input patterns in Sj(t). The 
cluster centers defined by (9) guarantee that the sum 
of the squared distances from all the points in Sj(t) to 
the new cluster center is minimized. 
Step4: If  vj(t+1)= vj(t) for j=1,2,…,L, the algorithm 
has converged and the procedure is terminated. 
Otherwise go to Step2. 
     Once the centers are identified, the variances of 
the Gaussian functions are chosen to be equal to the 
mean distance of every Gaussian center from its few 
(usually from 3 to 7) neighboring Gaussian centers. 
     When the centers and variances of the Gaussian 
functions are chosen, we are left with the task of 
choosing the interconnection weights from the 
hidden layer to the output linear layer. These 
interconnection weights are chosen in a way that 
minimizes the error function: 
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where i is the index of the neuron in the output 
layer, and wi are the weights. The weights are found 
by following the well known gradient descent 
procedure [12], which modifies the weights by an 
amount proportional to the negative gradient of 
E(wi). The error function can also be written as: 
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where di(p) is the actual output (the target) and yi(p) 
is gained output. Further this expression can be 
written as: 
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     Let observe two networks with number of 
neurons in the hidden layer N1 and N2, where N1>N2. 
By training algorithm we could achieve same value 
for E. But knowing the fact that network with larger 
number of neurons has better generalization 
properties, will lead us to a conclusion that the first 
network will give smaller average errors at the 
output. Namely the value of E estimated for testing 
samples will be smaller for the network with larger 
number of neurons in the hidden layer. Let ΩOFF is 
the set that contains the indexes of neurons that are 
off function and ΩON is the set of indexes of neurons 
that are on function. The error function will be: 
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since uj(p) for j∈ΩOFF is zero. In this case: 
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     Observing the expression (14) it is obvious that 
when some neurons are off function the value of E 
will be increased, since di(p) will largely differ from 
yi(p). As the set ΩOFF is becoming larger for both 
networks, the part di(p) will be more dominant in 
(14). This lead us to a conclusion that in this case 
the both networks will give similar errors at the 
output (since di(p) is same for both networks), and 
better generalization capabilities of the first network 
will be lost. Knowing the fact that the first network 
gives smaller errors when all neurons are on 
function, larger portion of neurons that are off 
function will lead to larger relative error increase for 
the network with larger number of neurons in the 
hidden layer.  
     Computer simulation results in the next section 
will confirm that neural networks that contain less 
neurons in the hidden layer are more reliable than 
those who contain more neurons. 
 



3   Computer Simulations and Results 
     In computer simulations we were using a linear 
antenna array of 12 elements placed at mutual 
distance of one half of a wavelength, and Signal to 
Noise Ratio (SNR) of various values. The number of 
users whose signals were tracked was chosen to be 
4, moving at mutual distance of 2°, in the sector 
wide 10°. In the training phase the angle step of 
training samples was 1°, and in the testing phase the 
angle step was 0.25° (first type of generalization 
explained in section 2). The number of neurons in 
the input level is 144, and the number of neurons in 
the output level was chosen to be 6 (angle resolution 
of 2° [2]). The achieved Mean Square Error (MSE) 
of the NN was chosen to be around 10-3.  Parameter 
that shows the quality of system performances is the 
mean error of DOA estimation for one of the users. 
The neurons that were off function were randomly 
chosen, and there were performed 50 trials of 
randomly chosen failed neurons of 3% to 30% with 
step of 3%.   
     As a first example we are going to see the results 
gained for SNR=10dB, and for number of neurons in 
the hidden layer L=144 and L=175, and for number 
of training samples N=145, N=172, and N=176. 
     Fig.2 presents the case when we have used 
L=144 neurons in the hidden layer and N=145 
training samples. The straight line is the mean error 
for estimated DOA, 0.23°, when all neurons are in 
function. As we can see, as the percentage of failed 
neurons increases, the mean error for DOA is 
increasing from 0.234° (for 3% of failed neurons) to 
around 0.36° (for 30% of failed neurons), which 
corresponds to relative error increase from 1.7% to 
56%.  
     Fig.3 presents the case when we have used 
L=144 neurons in the hidden layer and N=172 
training samples. As is expected the mean error for 
DOA estimation when all neurons are in function is 
decreased and its value is 0.185°. The relative error 
increase is from 13.5% (for 3% of failed neurons) to 
67% (for 30% of failed neurons).  
     Fig.4 presents the case when we have used 
L=175 neurons in the hidden layer and N=176. As is 
expected the mean error for DOA estimation when 
all neurons are in function is decreased and its value 
is 0.12°. The relative error increase is from 33% (for 
3% of failed neurons) to 158% (for 30% of failed 
neurons, the error is more than doubled).  
     Observing the relative error increases we can 
easily conclude that the reliability of the network is 
much better when L and M are smaller. But the 
reason for that is that for larger L and M the mean 
error, when all neurons are in function, is much 
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Fig.2 Mean error of DOA depending on the 

percentage of failed neurons for L=144 and N=145 
(SNR=10 dB) 

 
Fig.3 Mean error of DOA depending on the 

percentage of failed neurons for L=144 and N=172 
(SNR=10 dB) 

 
Fig.4 Mean error of DOA depending on the 

percentage of failed neurons for L=175 and N=176 
(SNR=10 dB) 
maller.  So, when we need very precise DOA 
stimation we should use larger values of L and M, 



but we should use neurons with long time of well 
functioning.   
     As we have mentioned, we have used 50 trials 
for randomly chosen failed neurons. The smaller 
error for larger percentage of failed neurons (Fig.3) 
lead us to a conclusion that on the final mean error, 
except the percentage of failed neurons, there is an 
influence of the positions of the failed neurons in the 
hidden layer! This issue needs further deep analyze. 
     As another example we are going to present 
some results for larger value of SNR. 
     Fig.5 is presenting the results gained for the case 
when SNR=20 dB. We were using L=144 neurons in 
the hidden layer and the number of training samples 
was N=145. From the figure we can conclude that 
the relative error increase is from 5% (for 3% of 
failed neurons) to 41% (for 30% of failed neurons). 
This example and including many other results that 
we have analyzed, lead us to a conclusion that the 
value of SNR has not much influence on the mean 
error increases.  
     Also we should mention that for all cases we 
have used appropriate values for some parameters 
for RBFs, like for example the number of 
neighboring neurons taken into account while 
estimating the variances for RBFs, or appropriate 
mse of the NN, in order to gain comparable results.   
 
 
4   Conclusion 
     We have presented the architecture of RBFNNs 
based smart antenna for DOA estimation problem in 
order to investigate the reliability of the hidden layer 
applied in the network. 
     Using computer simulation results we have 
showed that the networks with less neurons in the 
hidden layer are more reliable than those with larger 

number of neurons. But we have concluded that 
when we need more precise DOA estimations we 
should use more neurons in the hidden layer and 
more training samples. In this case we should be 
aware of the large performance degradation in the 
case if some percentage of the neurons fail. 

Fig.5 Mean error of DOA depending on the 
percentage of failed neurons for L=144 and N=145 

(SNR=20 dB) 
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