
Dynamic Modeling of Groundwater Pollutants with Bayesian Networks
Khalil  Shihab, Haider ramadhan  and Nida Al-Chalabi 

Department of Computer Science, SQU, OMAN

Abstract: We describe the development and application of a prototype Dynamic Bayesian Network (DBN) that models groundwater quality efficiently.  First, we present a new technique for data preprocessing that is needed when groundwater databases are used as the data source to learn the probabilities for dynamic decision models.  Then we describe the network models we developed, as well as the methods we are used. Various challenges, such as acquiring groundwater datasets and identifying pollutants and anticipating potential problem contaminants, are addressed. Finally, we present the results of applications of these models.
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1. Introduction
Groundwater quality and pollution are determined and measured by comparing physical, chemical, biological, microbiological, and radiological quantities and parameters to a set of standards and criteria. A criterion is a scientific quantity upon which a judgment can be based [1]. In this work, however, we considered only the chemical parameters, total dissolved solids (TDS), electrical conductivity (EC) and water pH. This is mainly because the experts and the researchers in the area recommend these parameters. In addition, the results of our analysis of data collected from many wells implied that these chemical parameters are useful indicators of groundwater quality because they constitute the majority of the variance in the data scatter.
We used Bayesian methods of statistical inference that offer the greatest potential for groundwater monitoring. This is because these methods can be used to recognize the variability arising from three different sources of errors, namely, analytical test errors, sampling errors and time errors, in addition to the variability in the true concentration. The Bayesian methods can also be used to significantly increase the precision and the accuracy of the test methods used in a given environmental laboratory [2]. The mobility of salt and other pollutants in steady state and transient environmental conditions can be predicted by applying Bayesian models to a range of spatial and 
temporal scales under varying environmental conditions. Bayesian networks use statistical 
techniques that tolerate subjectivity and small data sets. Furthermore, these methods are simple to apply and have sufficient flexibility to allow the development of complex systems.   

2. Sultanate of Oman, Salalah Plain   

The Ministry of Water Resources (MWR) in the Sultanate of Oman has been monitoring the groundwater quality since 1994. The regional monitoring networks were completed in 1995 [3]. More than 50,000 monitoring wells have been inventoried, in the course of which water samples have been collected and analyzed providing baseline data for environmental monitoring, which is consolidated in the national water quality database.   

The MWR has attempted to predict the groundwater quality by using traditional linear regression and non-metric multidimensional scaling models to interpret groundwater data. So far, these models have proven unsatisfactory mainly because they ignore the probabilistic temporal dependencies between water quality constituents. 

Therefore, this work presents the development and the applications of Bayesian techniques to forecast groundwater pollution levels in the Salalah plain, in particular in the Taqah area, which is the eastern part of the Salalah plain. 
3. Data Collection 
The Ministry of Water Resources (MWR) maintains data on the concentration of the harmful substances in the groundwater at Taqah monitoring sites [4]. We observed that good quality data were obtained from several monitoring wells in this region. Because of the lack of monitoring wells in certain areas in that region, we filled in the missing measurements with data obtained from Oman Mining Company (OMCO) and Ministry of Environmental and Regional Municipalities (MRME).

The MWR identified that the datasets collected from these monitoring wells in the Sultanate are important in assessing the groundwater quality and in the prediction of the effect of certain pollutants on drinking water. The period covered in these locations is from 1994 to 2004 [4, 5, and 6]. Each site has several monitoring wells and water samples were collected periodically from these wells and the concentration of the pollutants in these water samples was recorded. 

4. Data Pre-processing Using Bayesian Reasoning
We realized that the methods used by the laboratories do not emphasize accuracy. There is a lack of awareness among both laboratory and validation personnel regarding the possibility of false positives in environmental data.  In order to overcome this problem and to have representative data, we, therefore, used the following modified Bayesian model for preprocessing the datasets used for this study [7, 8].

4.1 Bayesian Model

The formulation of the model is as follows: 

Let S denote a particular hazardous constituent of interest. Since the concentration of the substance may vary from well to another, it is necessary to consider each well separately. Let אt=(אt1,​ אt2, אt3 , ...,אtm) be the vector of m measurements of the concentration of S in m distinct water samples from a given well at a given sampling occasion where (m>=1) and (t=1,2,...). Each measurement consists of the true concentration of S plus an error. 
Let Xt be the true concentration of S in the groundwater at sampling occasion t. If we assume that the true concentration Xt​ is unknown and is a random variable, the model evaluates the posterior distribution of Xt given the sample measurements אt at sampling occasion t. 
Using the normality assumption and given Xt = אt and δ2, the concentration measurements in אt represent a random sample of size m for random distribution with mean אt and variance δ2.
Since the concentration of the substance S in water samples obtained at different sampling occasions might vary considerably, we assume that the parameters אt and δ2 of the normal distribution are random variables with certain prior probability distribution. Therefore, the model for prior distribution of Xt and δ2 can be presented as follows:

 For t =1 ,2 ,…and given δ2 the conditional distribution of Xt at sampling occasion t is a normal distribution with mean μt-1 and variance δ2t-1 δ2, and marginal distribution of  δ2 is an inverted gamma distribution with parameter βt-1 and νt-1.

This model uses the following prior distribution, which represents the concentration measurements before the first sampling. 

The pdf of the prior distribution of X0 is:
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which is the pdf of the student’s t-distribution with 2v0 degrees of freedom, location parameters μ0 and variance δ02β0/ν0. 

Now suppose that the observations are available on the concentration of S, given the sample Xt the posterior marginal distribution of Xt is a student’s t-distribution with 2vt degree of freedom, location parameters μt and variance δt βt/νt where the pdf has the form: 
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 where:
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It is obvious from the equation of μt the sequential nature of this posterior distribution, and the process of updating this distribution may continue indefinitely when new data xt becomes available. 

it is frequently more convenient to put a range (or interval) which contains most of the posterior probability. Such intervals are called highest posterior density (HPD) intervals. Thus for a given probability content of (1-α), 0< α<1, a 100(1- α) percent HPD interval for Xt, is given by:  
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when t2vt(α/2) is the 100(1- α/2) percentile of the student’s t-distribution with 2vt degree of freedom.

4.2 The Bayesian Algorithm
In brief, the monitoring algorithm, which is based on the Bayesian model, is as follows:

1. Fix a value of α (0< α <1) based on the desired confidence level. In this case, we chose α to be 0.01.

2. Use the following parameters of the prior distribution:

β​​0=  ​0.0073 , ν​​​​​​​​​​​​​​​​​0=2.336 , μ0= 9.53 , δ​0​2 =3056.34 .

3. At each sampling occasion  t , ( t= 1,2,...) , compute the parameters β​​t , νt , μt and δt of the posterior distribution Xt given the set of observations in אt  on the concentration of S available from a given well in a given site using  (2.3). Compute LHPD and UHPD (the lower and upper limit of HPD) using these parameter estimates and (2.4).

4. Plot μt, LHPD, and UHPD that are obtained in step 3 above against sampling occasion t.

5. For the next sampling occasion, update the values of the parameters β​​t, νt, μt and δt using (2.3) and the datasets just obtained. Re-compute LHPD, and UHPD using the updated parameter values in (2.4) and repeat step 4 above.

Table 1: The concentration of pH for well MW1 – Salalah plain

	Date
	OC
	LHPD
	ETC
	UHPD

	84
	7.8
	7.6
	7.8
	8

	85
	7.7
	7.7
	7.8
	7.9

	86
	7.2
	7.4
	7.6
	7.8

	87
	7
	7.2
	7.4
	7.6

	88
	7
	7.2
	7.3
	7.5

	89
	7.2
	7.2
	7.3
	7.4

	90
	7
	7.2
	7.3
	7.4

	91
	7
	7.1
	7.2
	7.3

	92
	7.6
	7.2
	7.3
	7.4

	93
	7.4
	7.2
	7.3
	7.4

	94
	7.4
	7.2
	7.3
	7.4

	95
	7
	7.2
	7.3
	7.3

	96
	6.1
	7.1
	7.2
	7.3

	97
	6.7
	7.1
	7.2
	7.2

	98
	7.1
	7.1
	7.2
	7.2

	99
	5.7
	7
	7.1
	7.1

	00
	5.7
	6.9
	7
	7.1

	01
	6.3
	6.9
	6.9
	7

	02
	6.2
	6.8
	6.9
	7

	03
	6.4
	6.8
	6.9
	7

	04
	6.4
	6.8
	6.9
	6.9


5. Bayesian Networks
After the pre-processing stage, we constructed and used a Bayesian Network (BN) as an initial building network for the construction of two Dynamic Bayesian Networks in order to predict the impact of pollution on groundwater quality. 
Dynamic Bayesian Networks (DBNs) extend Bayesian Networks from static domains to dynamic domains by introducing relevant temporal dependencies between the representations of the static network at different times  [9, 10]. In contrast to the time series models that use regression to represent correlations, DBNs represent the temporal causal relationships between variables. 
A series of BNs, which act as time slices, can be connected to create a Dynamic Bayesian Network (DBN). As new evidence is added to a DBN, new time slices are added. To reduce computational complexity, old time slices are commonly removed and their information summarized into prior probabilities of following slices. This produces a moving window of slices. 

The temporal repetition of identical model structures encourages the integration of object-oriented techniques with Bayesian networks. This modeling technique has received increasing interest in the literature over the past decade. It started with methods for reusing elements of network specifications and division of large networks into smaller pieces. Therefore, we used the Hugin and dHugin tools for implementing our Bayesian networks [11]. The Hugin system allows the implementation of an OOBN [12]. The system considers a Bayesian Network (BN) as a special case, initial building network, of an OOBN.  Other networks in the OOBN are nodes that represent instances of the base network. 
5.1 Bayesian Networks Development
Identifying the domain variables (pollution constituents) and the causal relationships between these variables constitute the main part of development process. In our study, we only considered the dependencies between total dissolved solids (TDS), electrical conductivity (EC) and water pH. In the Sultanate of Oman, these are the main factors that industry experts were dealing with and, therefore, maintaining good data about them. In fact, we used our literature-based network structure as a starting point for discussion with the experts to explain the Bayesian network approach and to get their input. In addition, we analyzed the data collected from many wells and the results revealed that these chemical parameters are useful indicators of groundwater quality because they constitute the majority of the variance in the data scatter.

The electrical conductivity (EC) of the water has been used as a measure for the salinity hazard of the groundwater used for irrigation in the Salalah plain. According to international water-quality standards, irrigation water with EC values up to 1 mS/cm is safe for all crops and between 1 and 3 mS/cm is acceptable, but values higher than 3 mS/cm restrict the use of water for many irrigated crops. Changes in conductivity can be caused by changes in water content of the soil and by soil or groundwater contamination.
The total dissolve solid (TDS) limit is 600 mg/L, which is the objective of the current Plan of the MWR. TDS contains several dissolved solids but 90% of its concentration is made up of six constituents. These are sodium Na, magnesium Mg, calcium Ca, chloride Cl, bicarbonate HCO3 and sulfate SO4. We, therefore, considered only these elements in the calculation of TDS, which is represented as a node without parents in the network structure. This simplification is necessary to make the problem tractable and to keep it consistent with available data without losing information.    

We also used the following relationship between TDS and EC [1].

TDS = A * EC; where A is a constant with value between 0.75 and 0.77.

Both TDS and EC can affect water acidity or water pH. Solute chemical constituents are variable in high concentration at lower pH (higher acidity). On the other hand, acidity allows migration of hydrogen ions (H+), which is an indication of conductivity. Therefore, our work concentrated on the following relations: TDS ( EC, EC   ( pH,  TDS ( pH.
Knowing that the maximum allowable TDS in the drinking water is 600 mg/l, we divide the relevant dataset into two categories, considering TDS=550 is the central point. Thus, the first category has TDS < 550 and the second category has TDS >= 550. For EC, we also divide the data sample into two categories: data with EC < 670 and data with EC >= 670. Regarding pH, we also divided the relevant dataset into two categories, data with pH < 7.5 and data with pH >= 7.5. 

Table 2. TDS and EC data for the well Well 001/577

	Year
	Mg
	So4
	Na
	Ca
	Cl
	TDS
	EC

	1994
	17
	14
	31
	96
	51
	2203
	671

	1995
	7
	11
	20
	60
	35
	2128
	386

	1996
	16
	25
	29
	52
	61
	2178
	491

	1997
	13
	19
	30
	102
	51
	2212
	741

	1998
	12
	16
	32
	93
	62
	2212
	430

	1999
	14
	15
	26
	98
	55
	2207
	727

	2000
	14
	20
	28
	104
	59
	2225
	668

	2001
	16
	23
	32
	135
	61
	2268
	727

	2002
	12
	17
	28
	115
	67
	2242
	716

	2003
	14
	20
	30
	121
	68
	2255
	753

	2004
	15
	21
	31
	130
	71
	2272
	796


Table 2 shows the monitoring measurements of the main components of TDS along with the measurements of EC for Well 001/577. To analyze the relations mentioned above the following probabilities were calculated.
 P (TDS < 550) = 0.556 and P (TDS >= 550) = 0.444.
We processed the dataset for other wells in the same way to build a static Bayesian network (BN) representing each well. We tested these BNs with different values of TDS, EC and pH. 

Once the static BN model for each monitoring well was built, parameterized and tested, we used these models as initial building networks in the construction of our OOBN. This network, shown in  Figure 1, models the time slices for each well characterizing the temporal nature of identical model structures, where the initial building network, see Figure 2, describes a generic time-sliced network. 
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Fig. 1: The OOBN representing three time-sliced networks
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Fig. 2: The initial building block
5.2 Temporal Networks

As mentioned above, the initial-building network of the system is a one-time step representing a year. It is a model of the analysis of data sampled for each well of the four wells that are selected for this study. This one time step network fragment, shown in Figure 1, represents a class in the object-oriented paradigm. Objects (entities with identity, state and behavior) are instances of classes that correspond to type declarations in traditional programming languages.

In this context, a class is a description of an object by structure, behavior and attributes. Whenever an object of a class is needed, an instance of that class is created. The initial building network is, therefore, a class containing three sets of nodes, a set of input nodes, a set of output nodes and a set of protected nodes. The input and output nodes are collectively referred to as interface nodes [11]. The final OOBN is constructed by creating instances networks (objects) from the basic building network, spanning a number of time slices. Figure 1 shows a single time slice class for well MW1 and Figure 2 shows an OOBN representing three time-sliced networks.

5.3 Improving the CPT derivation process

One of the problems with developing BBNs for groundwater quality is the difficulty inherent in the establishment of conditional probability tables (CPTs).  Therefore, methods need to be sought to make it easier to select and justify values for CPTs. Studies have shown that sensitivity analysis can identify the relative importance of parameters in a BBN for overall BBN performance. Concentrating efforts on gathering accurate data for the most important CPTs enables time and effort reduction. Sensitivity analysis has also been used for validation of BBNs. 

In addition to using the pre-processing technique for correcting the laboratory data, we used SamIam tool for analyzing the dependencies between variables [13]. SamIam suggests single and multiple parameter changes that satisfy experts query constraint. The tool helps the user to make the smallest possible change to a parameter value that can satisfy the constraint. 

6. Application Results 

We tested the resulting network models in two phases. In the first phase, we examined data resulting from our pre-processing model, which was organized as yearly measurements covering data from the whole basin. The first task was to identify dependencies between the variables of groundwater quality in order to detect useful information on the process dynamics. The resulting network agreed very closely with the intuition of the experts. In the second phase, the aim was to test the constructed OOBNs for predicting the values of the variables in the future. The resulting networks were investigated by using Hugin Bayesian network inference tool for analyzing measurement data from three successive time slices. Using Bayesian networks to predict future values requires discovery of a dependency model that relates together variables from successive time slices or in some other way embeds temporal features into the model. 

7. Conclusion and Further Work

This work presents the assessment of groundwater quality using Bayesian techniques of automating probabilistic reasoning under conditions of uncertainty. These techniques, therefore, present effectively the probabilistic dependencies between the constituents of groundwater quality. Therefore, the simple Bayesian networks presented here are the first step towards having a comprehensive network that contains the other variables, such as nitrate, microbiological organisms, and chemical oxygen demand (COD) that are considered by the researchers significant for the assessment of groundwater quality in the Salalah plain in particular.

We spent significant time and effort to gather sufficient relevant data for this study from many wells in the Salalah plain. We plan to continue this work by adding these variables to the resulting models in order to improve the models’ predictive accuracy.

We also demonstrated the general benefit of using OOBN that describes identical structures that can be interconnected to represent a successive time slices network, i.e. Dynamic Bayesian Network (DBN).

We plan to continue this work by adding these variables to the resulting models in order to improve the models’ predictive accuracy.
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