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Abstract: Neural networks are a consistent example of non-parametric estimation, with powerful universal ap-
proximation properties. However, the effective development and deployment of neural network applications, 
has to be based on established procedures for estimating confidence and especially prediction intervals. This 
holds particularly true in cases where there is a strong culture for testing the predictive power of a model, e.g., 
in financial applications. In this paper we review the major state-of-the-art approaches for constructing confi-
dence and prediction intervals for neural networks, discuss their assumptions, strengths and weaknesses and we 
compare them in the context of a controlled simulation. Our preliminary results, which are being presented in 
this paper, indicate a clear superiority of the combination of the bootstrap and maximum likelihood approaches 
in constructing prediction intervals, relative to the analytical approaches.  
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1 Introduction 
 
The efficient utilization of neural networks, espe-
cially in financial applications, requires a confi-
dence measure of their predictive behavior in the 
statistical sense. Neural network predictions suffer 
from uncertainty due to: i) inaccuracies in the train-
ing dataset and ii) limitations of the model and the 
training algorithm. The fact that the training dataset 
is typically noisy and incomplete, while all the pos-
sible realizations of the dependent variable are not 
available, contributes to the total prediction vari-
ance a component known as data noise variance, 
σε2. Moreover, the limitations of the model and the 
training algorithm introduce further uncertainty to 
the network’s predictions. It is called model uncer-
tainty and its contribution to the total prediction 
variance is called model uncertainty variance, σm

2. 
These two uncertainty sources are assumed to be 
independent and the total prediction variance σp

2 is 
given by the sum of their variances, i.e., σε2 and σm

2 
[10].    
 
If the above variance estimates σm

2 and σp
2 are 

available, we can form confidence and prediction 

intervals. In the case of confidence intervals we 
focus on σm

2, since we are interested in the differ-
ence between the predicted output  and the un-
known function φ(x

ˆ
iy

i), which generated the avail-
able observations (xi, yi). In the case of prediction 
intervals we focus on σp

2, since we are interested in 
the difference between the predicted output   and 
the realized observation y

ˆ
iy

i.  
 
In section 2 of this paper, we examine in more de-
tail the difference between confidence and predic-
tion intervals. In section 3, we examine the analyti-
cal approach in constructing confidence and predic-
tion intervals, which basically extends the nonlinear 
regression theory in the nonparametric setting. The 
Bayesian approach takes a different view of this 
problem, but since it is basically inappropriate for 
multidimensional problems, we do not examine it 
any further here. In section 4, we examine the use 
of maximum likelihood techniques for providing 
local error bars (local estimates of a variable noise 
variance).  In section 5, we examine the use of 
bootstrap, as a typical resampling technique em-
ployed by ensemble methods (i.e., bagging and 
balancing) for constructing confidence intervals. In 

 1

mailto:zapranis@uom.gr
mailto:slivanis@uom.gr


 

 

section 6, in the context of a controlled simulation 
we contrast the synergistic use of bootstrap and 
maximum likelihood approaches with the analytical 
approach. Finally, in section 7 we conclude. 
 
 
2 Confidence Intervals versus Predic-
tion Intervals 
 
Suppose we have a set of observations Dn = (xi, yi), 
1 ≤ i ≤ n, that satisfy the nonlinear neural model: 
 
 

( )0;i iy gλ iε= +x w  (1)  
Fig. 1: Relationship between the network’s predic-
tion, the observation yi and the underlying function 
φ(xi), which has created the observation with the 
addition of the stochastic component εi.  

 
where yi is the output of the neural network gλ(xi; 
w0) and w0 represents the “true” vector of the net-
work’s parameters w for the unknown function 
φ(xi), which is being estimated by the network. In 
this setting, it is true that:  

 
 
network, i.e., it is concerned with the distribution of 
the quantity: 

 
 

( ) ( ) [ ]0; |i ig Eλ ϕ≈ ≡x w x xi iy

)
n

n

 (2)  
( )ˆ ˆ;i i n iy g y yλ i− ≡ −x w  (6) 

 
 Initially, we assume that the error ε is i.i.d. with 

zero mean and constant variance σε2. The vector 
 is the least squares estimate of wˆ nw 0 obtained by 

minimizing the error function: 

From Fig. 1 and equations (5) and (6) it follows 
that: 
 
 

( ) ( )( )ˆ ˆi i i iy y y iϕ ε− = −x +  (7)  
 

( )( 2

1
;i i

i
SSE y gλ

=

= −∑ x w  (3)  
As we can see from equation (7) the confidence 
interval is enclosed in the prediction interval.                             

The predicted output of the network for the input 
vector xi and the weight vector , is: ˆ nw

 
 
3 Analytical Methods  

  
( )ˆ ˆ;i iy gλ= x w  (4) Let us denote with (x∗, y∗) an observation which 

has not been used for the training of the network 
(e.g., a future observation), that satisfies the follow-
ing relationship: 

 
In this framework, a confidence interval is con-
cerned with the accuracy of our estimate of the true 
but unknown function φ(xi), i.e., it is concerned 
with the distribution of the quantity: 

 
 

( ); ny gλ ε∗ ∗ ∗= +x w  (8)  
 

( ) ( ) ( )ˆ ˆ;i i n ig yλϕ ϕ− ≡x x w x i−  (5) 
 
Our aim is to construct a prediction interval for y∗ 
and a confidence interval for φ(x∗), which is basi-
cally the conditional expectation of y∗ given x∗. We 
assume that ε is i.i.d. with zero mean and constant 
variance σε2. The vector of the network parameters 
is being estimated by minimizing the sum of 

 
On the other hand, the much more important notion 
of a prediction interval is concerned with the accu-
racy of our estimate of the predicted output of the 
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( )
1 21T T

2,ˆ ˆ 1a n py t εσ
−∗

− ∗ ∗
 ± +  

f F F f  (12) squared errors (3). For a large number of training 
patterns and for a neural network which provides a 
good approximation of the underlying function 
φ(x∗), the estimated vector  will be close to the 
“true” parameter vector w

ˆ nw
0. Then a first order Tay-

lor expansion can be used in order to obtain a linear 
approximation of the neural network function 
around x∗:  

 

 
 ( )ˆ ˆ;y g∗ ∗≡

−

x w

( )

( ) ( )T
0 0ˆ;

n

ng

λ

λ
∗

∗≈ +x w f w w
 (9) 

 
 
where: 
 
 ( )0T

1

, ...,
pw w

λ λ
∗ =

 ∂ ∂
f 0; ;g g∗ ∗ ∂ ∂





x w x w
 (10) 

De Veaux et al [3] showed that the above method 
for computing the prediction interval works well 
when the training dataset is large. However, when 
the training dataset is small and the network is 
trained to convergence the matrix FΤF can be 
nearly singular. In this case, the estimated predic-
tion intervals are not reliable. On the other hand, 
stopping the training prior to convergence, to avoid 
overfitting, reduces the effective number of pa-
rameters and can lead to prediction intervals that 
are too wide. A solution to this problem is given by 
employing connection pruning techniques, such as 
the Irrelevant Connection Elimination scheme 
(ICE) [13]. After the convergence of the training 
algorithm to a solution, ICE eliminates the network 
connections that can be presumed redundant. An-
other approach is to deactivate irrelevant connec-
tions during training using a weight decay method 
[12]. In this case, the error function which is being 
minimized has the form: 

 
        
Then the 100(1-α)% confidence interval for φ(x∗) 
is given by [2]: 

  
  

( )( )2

1 1
;i i

i i
y g c wλ

= =

− +
pn

i∑ ∑x w  (13) ( )
1 21T T

2,ˆ ˆa n py t εσ
−∗

− ∗ ∗
 ±   
f F F f  (11) 

  
  
where c > 0 is a weight decay parameter. The pre-
diction interval in this case becomes [3]: 

The matrix F is the (n × p) Jacobian matrix, where 
n is the number of samples used to estimate , p 
is the number of the network parameters and 

ˆ nw
ˆεσ  is 

the estimate of the standard deviation of the error 
term. For a network with m input units and λ hidden 
units, the number of network weights in (11) is p = 
λ(m + 2) + 1.  

 
 

( )
( )

1T Tˆ ˆ [1y t cσ
−∗ ± + +f F F I2,

1T T 1 2]

a n p

c

ε− ∗

−

∗+F F F F I f
 (14) 

 

 
  
  For a neural network with irrelevant connections 

(unneeded connections for the task at hand), the 
number of the parameters is not equal to the num-
ber of the network weights. There is an “effective” 
number of parameters peffective < p, which corre-
sponds to an equivalent solution (in terms of SSE) 
to the initial one. Huang and Ding [2] showed that 
if the network is trained to convergence, then equa-
tion (11) is valid for large training samples, even if 
we set the number of the network parameters equal 
to the number of the connections. 

4 Maximum Likelihood Methods 
 
In contrast with analytical methods, here we do not 
assume a constant error variance. Maximum likeli-
hood methods do not impose this restrictive condi-
tion, but instead they try to estimate σε2(x) as a 
function of x. Just as in the case of analytical meth-
ods, we assume that the estimated neural network 
provides a good approximation of the unknown 
underlying function, that is the expectation E[y|x] – 
see equation (2). From this equation it follows that 
the variance can be approximated by training a sec-
ond neural network fv(x;u) (where ν is the number 
of hidden units and u is the weight vector of the 
new network), using squared residuals (gλ(x;w0) – 

 
Furthermore, if we assume that the error term is 
normally distributed as Ν(0, σε2), then the 100(1-
α)% prediction interval for y∗ is given by [2]: 
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( ) ( )( )*
,

1

1 ˆ; i
avg

i
g g

Bλ λ
=

= ∑x x
B

w  (17) y)2 as the target values. In this case the error func-
tion that is being minimized is: 

  
  

( )( ) ( ){ }22
0 0

1
; ;i i i

i
g y fλ ν

=

− −∑ x w x u
n

u

(15) To generate confidence and prediction intervals we 
assume that the neural network provides an unbi-
ased estimation of the true regression φ(x) ≡ E[y|x]. 
This means that the distribution P(φ(x)|gλ,avg(x)) is 
centred on the estimate gλ,avg(x). Our assumption 
here is that the bias component in the confidence 
interval is minimal in comparison to the variance 
component. If we also assume that the distribution 
of P(φ(x)|gλ,avg(x)) is Gaussian, then the variance of 
this distribution can be estimated by calculating the 
variance across the B outputs: 

 
and . ( ) ( )2

0ˆ ;i ifε νσ ≈x x
 
Rather than using two separate networks, Nix and 
Weigend [9] proposed a single network with one 
output for φ(x) = E[y|x] and another for σε2(x). Us-
ing the sum of squares error function to obtain u* 
in fv(x;u), and thus σε2(x), is equivalent to using 
maximum likelihood estimation, and for this reason 
these methods are called maximum likelihood 
methods.  

 
 

( ) ( )( ) ( )( )2
*2

,
1

1ˆ ˆ;
1

i
m a

i
g g

B λ λσ
=

= −
− ∑x x w

B

vg x 
  

 5 Ensemble Methods By assuming the distribution P(φ(x)|gλ,avg(x)) is 
Gaussian, then its inverse distribution P(gλ,avg(x)| 
φ(x)) is also Gaussian. While we do not know the 
distribution of inputs and outputs, the best that we 
can do is to estimate the distribution P(gλ,avg(x)| 
φ(x)) from the distribution P(gλ(x)|gλ,avg(x)). So 
given the observation (x∗, y∗) using bootstrap we 
can construct the following confidence interval: 

 
The rapid increase in computing power of modern 
computers made realistic the use of neural network 
ensemble methods for estimating confidence and 
prediction intervals for neural networks [6], [11]. 
 
In these techniques estimates from a number of 
neural networks are combined to provide generali-
zation performance superior to that provided by a 
single network. Some of the most popular varieties 
such as bagging and balancing [6], use bootstrap 
[5] to generate the training datasets for the ensem-
ble approach. Both of these techniques attempt to 
“stabilize” high-variance predictors such as neural 
networks by generating multiple bootstrap versions 
of the predictor and then combining the outputs of 
these individual versions to form “smoother” pre-
dictions. However, bagging and balancing differ in 
the way the predictions are combined. Bootstrap 
creates a set Ψ of B new datasets, by repeatedly 
sampling by replacement from the original data set 
in a random manner: 

 
 

( ) ( ), 2, ˆavg a B mg tλ σ∗ ∗±x x  (19) 

 
where the estimation of the model uncertainty vari-
ance σm

2 is given from equation (18). However, this 
variance estimate will be biased. For most input 
vectors x will be over-estimated and so the confi-
dence interval (19) will also be over-estimated. 
Carney et. al. [1] proposed a method to deal with 
this problem. They divide the number of bootstrap 
networks for the ensemble into M smaller ensem-
bles generating a set of M gλ,avg(x) values. 
 

 From the set of these values we approximate a 
more accurate variance measure for the distribution 
P(gλ,avg(x)|φ(x)). The variance estimate is not com-
puting only from the M ensemble outputs, while in 
this case the variance measure itself would be 
highly variable and unreliable. Instead we form 
new bootstrap re-sampled sets of the M gλ,avg(x) 
values. 

 
( )( ){ }

1
ˆ;

B
i

i
gλ

∗

=
Ψ = x w  (16) 

 
 
These datasets are being used for training a set of B 
networks. The output of the network for the input 
vector x will be the average of the B network out-
puts:  
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Fig. 3: The 95% prediction interval for normal dis-
tribution of y, using the combination of the boot-
strap and maximum likelihood estimation of σp . 
The number of hidden units is λ = 3. The synthetic 
data set was sampled by the Gaussian distribution 
Ν(0.5+0.4sin(2πx), 0.052+0.1x2). The noise vari-
ance is function of x. The PICP is 95.9%. 

Fig.2 : The 95% prediction interval for normal dis-
tribution of y, using the algebraic estimation of σp. 
The number of hidden units is λ = 3. The synthetic 
data set was sampled by the Gaussian distribution 
Ν(0.5+0.4sin(2πx), 0.32). The noise variance is con-
stant. The PICP is 89.6%. 
 

  
 We calculate a variance measure for each of these 

sets and then calculate an average of these to pro-
vide a smoother, lower variance estimate of the 
variance of the distribution P(gλ,avg(x)|φ(x)).  

6 A Controlled Simulation 
 
We generated two synthetic datasets: α) with con-
stant noise term variance and β) with noise term 
variance which is a function of x. The first dataset 
was created by employing random sampling from 
the Gaussian distribution Ν(0.5+0.4sin(2πx), 0.32), 
while the second dataset was created by employing 
random sampling from the Gaussian distribution  
Ν(0.5+0.4sin(2πx), 0.052+0,1x2). 

 
This process is not computationally intensive since 
there are no networks to train. If we assume Gaus-
sian distribution we can construct a confidence in-
terval in the usual fashion: 
 
 

( ) ( ), 2 ˆavg a mg zλ σ∗ ∗±x x  (20) In both cases a neural model with one hidden layer 
and λ = 3 hidden units was selected, on the basis of 
the Zapranis’ and Refenes’ framework for “neural 
model identification, selection and adequacy” [14].  

 
where (1 – α)100% is the level of confidence. 
 

 To estimate prediction intervals, we must compute 
an estimate of the prediction variance σp

2, which is 
given by the sum of the model uncertainty variance 
σm

2 and the data noise variance σε2. For the estima-
tion of σε2 we can use maximum likelihood tech-
niques or analytical methods [1], [6]. For the ob-
servation (x∗, y∗) which has not used for the train-
ing of the network, the prediction interval is given 
by: 

In Fig. 2 we can see the 95% prediction interval for 
the synthetic dataset α and the analytical approach 
(12). As we have already discussed the analytical 
approach can only handle constant error variance. 
The Prediction Interval Correct Percentage (PICP) 
in this case is 89.6%. Since, its nominal value is 
95%, for prediction intervals of good quality we 
expect the value of PICP to be systematically 
around 95%.   
   

( ) ( ), 2, ˆavg a B pg tλ σ∗ ∗±x x  (21) In Fig. 3 we can see the 95% prediction interval 
(21) for the synthetic dataset β. The local estimates 
of the data noise variance, σε2(x), were obtained by 
using the ML approach, while the local estimates of 
the model uncertainty variance, σm

2(x), were ob-
tained by using the bootstrap approach. The total 
prediction variance, σp

2(x), in (21) is simply the 

 

In the next section we compare the aforemen-
tioned approaches in the context of a controlled 
simulation. 
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sum of σm
2(x) and σε2(x). As we can see the PICP in 

this case is much improved (95.9%). 
 
 
7 Summary and Conclusions 
 
Neural networks are a research field which has en-
joyed rapid expansion and increasing popularity in 
both the academic and industrial research commu-
nities. However, their efficient utilization requires 
dependable confidence and especially prediction 
intervals. In this paper, we examined the state-of-
the-art approaches for confidence and prediction 
interval estimation, and we compared the analytical 
approach and the synergistic use of the ML and 
bootstrap approaches for constructing prediction 
intervals, in the context of a controlled simulation. 
 
The analytical approach we presented here was 
based on the first order Taylor expansion of the 
neural estimator. Other analytical approaches are 
the delta estimator (first order Taylor expansion 
which uses the Hessian matrix) and the sandwich 
estimator (second order Taylor expansion using the 
Hessian matrix). The sandwich estimator is consid-
ered to tolerate better model misspecification. But 
on the other hand, delta and sandwich estimators 
require the computation and inversion of the Hes-
sian matrix, a procedure which, under certain cir-
cumstances, can be very unstable. In an empirical 
investigation in [2] it is reported that the use of the 
Hessian matrix does not improve the accuracy of 
the estimation. In any case, the analytical ap-
proaches can not handle non constant noise vari-
ance. 
 
The maximum likelihood approach can be used for 
estimating local error bars which are a function of 
x, i.e., σε2(x). However, these cannot be used for 
constructing neither confidence, nor prediction in-
tervals, by themselves. Moreover, the ML approach  
underestimates the “true” noise variance, since the 
neural network fν in (15) interpolates between the 
errors and does not pass through all of them.  
 
The ensemble methods attempt to stabilize the high 
variance of the neural network predictors using 
bootstrap to generate multiple versions of the 
model and then combining the network outputs.  
The bootstrap approach can be used to obtain local 
estimates of the model uncertainty variance, σm

2(x), 
and thus for constructing confidence intervals. By 
adding to σm

2(x) the local noise variance estimate, 
σε2(x), we can estimate the total prediction variance, 

σp
2(x), and thus obtain a prediction interval from 

equation (21). 
 
As we have seen that approach gave as PICP equal 
to 95.9% for the synthetic dataset with noise vari-
ance which was a function of x. This compares very 
favourably to the PICP of 89.6% for the synthetic 
dataset with constant variance and the analytical 
approach.  
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