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Abstract: This paper describes an approach using information theory to derive a new complexity 
measure for proteomics maps generated using 2-dimensional gel electrophoresis. The maps used 
in this study were partitioned into 5x5 grids and the total abundance of protein material in each 
grid was compared to the total abundance for the entire map. Next, Shannon's relation was 
applied to characterize the distribution of spots across the proteomics map. Details of the 
approach are discussed here, including an illustrative example and an example of the calculations 
for a proteomics map containing 200 spots. Finally, results for the Map Information Content 
index are presented for a set of five maps calculated using 200 spots, 500 spots, and 1,054 spots. 
It is hoped that the application of information-theoretic techniques to characterize the complexity 
of these maps, thus reducing the amount of information presented to the researcher, will help in 
the analysis and comparison of maps containing a great deal of information. 
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1 Introduction 
In the aftermath of the Human Genome 
Project the emerging technologies of 
genomics, proteomics, and metabolomics 
are taking an increasingly important role in 
the prediction of biomedicinal activity and 
chemical toxicity. Whereas microarray 
studies provide an assessment of cellular 
transcriptional processes, proteomics 
provides a better understanding of the cell 
function because proteins are the 
workhorses of the living systems. The field 
of proteomics includes technologies such as 
two-dimensional gel electrophoresis (2-DE), 
matrix-assisted laser desorption-ionization 
(MALDI), surface-enhanced laser desorp-
tion ionization (SELDI), and isotope-coded 
affinity tagging (ICAT). 

 Many authors have used 2-DE gel 
technology in understanding the molecular 
basis of chemical toxicity [1, 2]. In this 
method the tissue or cell exposed to the 
toxicant is homogenized and the proteins are 
separated by charge and mass through two-
dimensional electrophoresis. The abundance 
of each spot after separation gives the 
magnitude of a particular type of protein or a 
closely related set of proteins, which 
comprise an individual spot. A typical 2-DE 
get can have 1,500–2,000 identified protein 
spots. 
 An important goal of toxicoproteomics 
is to study the perturbation of protein 
expression in tissues under the influence of 
toxicants. However, characterizing patterns 
consisting of 1,500 or more objects is a 
daunting task and cannot be accomplished 



simply through visual inspection. It requires 
rigorous mathematical/statistical methods 
for a thorough and objective analysis of such 
patterns. Our group has been involved in the 
characterization of toxicoproteomic patterns 
using four different techniques: a) invariants 
of graphs associated with proteomics maps 
[3], b) spectrum-like representations of 
proteomics maps based on projections of the 
3-D space (mass, charge, and abundance) 
onto three (xy, yz, and xz) planes [4], c) 
selection of toxicologically-relevant spots 
based on robust statistical methods, and d) 
information-theoretic characterization of the 
pattern of protein spots of the 2-DE gel. 
 
 
2 Information-Theoretic 
Formalism 
A proteomic map can be looked upon as the 
two-dimensional distribution pattern of the 
total cellular mass of identifiable proteins 
based on charge (x) and mass (y). When a 
cell is exposed to a toxicant, its 
transcriptional and translational processes 
are perturbed, potentially resulting in a 
redistribution of protein spots and the 
appearance or disappearance of some 
proteins. Information theory is a suitable 
mathematical tool for characterizing such 
complex patterns. Previously, we have 
applied information theory to characterize 
the neighborhood complexity of atomic 
bonding patterns within molecules [5–
9]. Here we report the application of 
information theory in characterizing the 
proteomic patterns of cells exposed to four 
peroxisome proliferators, viz., perfluoro-
octanoic acid (PFOA), perfluorodecanoic 
acid (PFDA), clofibrate, and diethylhexyl-
phthalate (DEHP). 
 In the information theoretic formalism, a 
set A of N objects is partitioned into subsets 
Ai with cardinalities Ni; Σ Ni = N. A 
probability scheme is then associated to the 
distribution: 
 

A1, A2, …, Ah 
p1, p2, …, ph 

 

Where pi = Ni / N 
 
The complexity of the system consisting of 
N objects is computed by Shannon’s 
formula: 
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3 Information Content of 
Proteomics Maps 
Two-dimensional gel electrophoresis data on 
the effects of the four peroxisome 
proliferators; PFOA, PFDA, clofibrate, and 
DEHP; were developed in the laboratory of 
Frank Witzmann using liver tissue from 
treated male Fisher-344 rats [10]. A total of 
1,054 distinct protein spots were quantified. 
Each spot has associated with it magnitudes 
of charge, mass, and abundance. 
 In applying information-theory to the 
study of proteomics maps, it was of interest 
to calculate the complexity (information 
content) of the distribution of proteins 
(abundance) over the mass-charge plane. To 
this end, the maps were divided on the xy 
plane into n x n cells, where n = 1, 2, …, 5. 
It may be noted that as the number of cells 
(n2) increases, the protein spots are 
distributed across an increasingly larger and 
larger number of cells. With high enough 
values of n, it is conceivable that each spot 
might occur in its own cell, which would be 
much too reductionistic to yield interesting 
results. For this communication, the charge-
mass proteomics maps for the most 
abundant 200, most abundant 500, and the 
complete maps of 1,054 spots have been 
divided into 5x5 grids for the calculation of 
information content indices. 
 
 
4 Calculation Procedure 
Since proteomics maps for Fisher-344 rat 
liver cells range in charge roughly from 0 to 
3,100, mass from 0 to 2,500, and abundance 
from 0 to 163,000, let us first consider a 
simpler example of map characterization. 
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Figure 1. Simulated 20-spot proteomics map. 
 
 Fig. 1 presents a simplified sample map 
of 20 spots. As can be seen from Table 1, 
the values for x, y, and z all range from zero 
to four. 
 
Table 1. Simulated x, y, and z coordinates for a 
20-spot map. 
Spot ID x y z 

1 2.73 1.35 1 
2 1.18 0.80 1 
3 0.87 0.49 3 
4 3.81 3.28 4 
5 3.14 3.32 4 
6 3.41 0.31 4 
7 3.13 2.48 4 
8 3.21 1.49 4 
9 0.21 3.53 4 
10 3.32 3.60 2 
11 0.74 3.72 2 
12 3.48 1.70 2 
13 3.89 0.22 1 
14 2.52 0.83 1 
15 1.46 2.76 1 
16 0.46 0.81 3 
17 0.09 3.20 2 
18 3.20 2.82 2 
19 0.87 0.84 2 
20 1.38 1.26 4 

 
 Fig. 2 presents the same sample map 
divided into a 4x4 grid. Once the divisions 
have been made, it is a simple matter to sum 
the values of z (or Ni) for each sector, as 
shown in Fig. 3. 
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Figure 2. The simulated proteomics map evenly 
divided into a 4x4 grid. 
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Figure 3. Values of Ni for each of the 16 sectors 
on the 4x4 grid. 
 
 The value of pi is then calculated for 
each sector. For this map, the total sum of 
the values of z for the entire map (N) is 
equal to 51. Therefore, pi for the sector in 
the uppermost lefthand corner of the map is 
equal to Ni / N, where Ni equals 8 and N 
equals 51. Thus the value of pi for this 
uppermost lefthand cell is approximately 
0.1569 
 

0.1569 0.0196 0.0196 0.0980 

0 0.0784 0.0196 0.1176 

0 0.0196 0 0.1176 

0.1569 0 0 0.1961 

Figure 4. Values of pi for each of the 16 sectors 
on the 4x4 grid. 
 
 Once all of the values of pi have been 
calculated, the resulting map complexity 



index (MIC) can be calculated. However, 
seeing that several of the cells have zero 
values, an approximation will have to be 
made since it is meaningless to take the 
logarithm of zero. This is a very realistic 
problem when dealing with proteomics 
maps, since the proteins are not evenly 
distributed across the gel. As the values of pi 
approach zero, the value of pilog2pi also 
approaches zero. Therefore, if the value of 
(pilog2pi) for zero is approximated as zero, 
the value of MIC can be calculated for map 
grids containing empty cells. Fig. 5 presents 
the values of pilog2pi for each of the cells 
which are then summed to determine the 
value of MIC. In the case of our 20-spot 
map, MIC = 3.0872. 
 Before extrapolating this simple 
example to a proteomics map, there are 
several additional issues that must be 
addressed. 
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Figure 5. Values of pilog2pi for each of the 16 
sectors on the 4x4 grid. 
 
 First, the exact boundaries of a 
proteomics  map  vary  depending   on   the 
technique being used and the cells being 
studied. For the Fisher-344 rat liver cells, 
theoretically the maps range from a charge 
of 0 to 3,100, but the lowest value for charge 
that appears in the data set is 104, while the 
highest value is 3,050. However, if we 
normalize the range based on the minima 
and maxima of the dataset, we will not 
retain the overall dimensionality of the map, 
which could create problems later on if other 
maps have proteins that fall outside of those 
normalized ranges. So, it is important to 
consider the true dimensions of the gel, 
rather than simply the apparent range of the 
data. 
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Figure 6. Most abundant 200 spots for the 
control proteomics map divided into a 5x5 grid. 
 
 Secondly, many of the spots on a 2-DE 
gel do fit neatly into the arbitrarily defined 
sectors. As such, the centroid of each spot is 
used to determine the sector to which the 
protein belongs and all of its abundance is 
attributed to that sector. 
 In this analysis, a control sample and 
four treatments were considered, generating 
a total of 15 MIC values, five for the most 
abundant 200 spots, five for the 500 most 
abundant spots, and five for the complete 
maps. 
 Upon examining the five proteomics 
maps, it was found that empty bands 
appeared along two edges of the maps, while 
the other two edges were somewhat 
crowded. No proteins appeared at relatively 
low values for charge (x) or mass (y). The 
lowest value for charge was 104 and the 
lowest value for mass was 110. As such, it 
was decided that the upper bounds of the 
maps should be extended as well, based on 
the assumption that higher values for charge 
and mass than those observed could also 
occur. So, when dividing the maps into 
sectors it was decided that the x-axis would 
range between 0 and 3,150 (3,050 being the 
highest observed value of charge), and the y-
axis would range from 0 to 2600 (2,486 
being the highest observed value of charge). 
Fig. 6 presents a graphical representation of 
the proteomics map showing only the 200 
most abundant spots for the control with a 
5x5 grid superimposed onto the map. Figs. 7 
& 8 show the control values for pi and 



pilog2pi, respectively, on a 5x5 grid for the 
most abundant 200 spots. 
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Figure 7. Values of pi for each of the 25 sectors 
on the 5x5 grid for the most abundant 200 spots 
of the control map. 
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Figure 8. Values of pilog2pi for each of the 25 
sectors on the 5x5 grid for the most abundant 
200 spots of the control map. 
 
 
5 Results and Discussion 
The magnitudes of the Map Information 
Content (MIC) indices for the most 
abundant 200 spots, the most abundant 500 
spots, and for the entire set of 1,054 proteins 
spots reported by Witzmann for peroxisome 
proliferators [10] are presented in Table 2 
and Fig. 9. It may be noted that the 
magnitude of MIC decreases for the 
proteomics maps of cells exposed to 
toxicants. 
 A toxicologically interesting fact is that 
the two structurally related peroxisome 
proliferators PFOA and PFDA, along with 
clofibrate, have relatively similar MIC 
values as compared to the control and 

DEHP. This indicates that the MIC 
biodescriptor reported here may be capable 
of characterizing toxicity and toxic modes of 
action of toxicants. 
 
Table 2. Calculated values of MIC for the five 
treatments using the most abundant 200, most 
abundant 500, and entire set of 1,054 proteins. 
 200 500 1054 
Control 3.8390 3.9486 3.9892 
PFOA 3.7865 3.9112 3.9519 
PFDA 3.7702 3.8861 3.9289 
Clofibrate 3.7769 3.9051 3.9584 
DEHP 3.7033 3.8387 3.8923 
 
 One desirable property of chemo-
descriptors is the ability to discriminate 
among closely related chemical structures. 
Analogously, we would expect that 
biodescriptors derived from biological 
systems would be able to discriminate 
among closely related biochemical 
processes. The MIC index not only 
discriminates among maps derived for 
different structural classes of peroxisome 
proliferators, it also discriminates between 
closely related compounds, e.g., PFOA and 
PFDA. It is expected that the MIC index 
will find applications in pattern recognition 
for proteomics maps pertinent to biomed-
icinal chemistry, pharmacology, pathology, 
and toxicology. 
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Figure 9. Bar chart comparing the values of MIC 
across the five treatments for the 200-spot, 500-
spot, and 1,054-spot proteomics maps. 
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