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Abstract: - This paper presents a new methodology to compute the electromagnetic field in practical cases of 
indoor communications. In particular, we consider the highly interesting case of the so-called interface modeling, 
i.e. when a plane wave propagates to the interior of a building. The proposed technique is based on a parabolic 
wave equation in three dimensions, while the cross section of the computational domain, as the wave propagates, is 
modeled by means of a finite element technique, terminated by highly absorbing PML boundaries. This 
formulation enables a robust computational modeling of obstacles of complex shape in a fully automated way.  
Unlike standard ray-tracing techniques, the proposed scheme makes it possible to solve a series of complex 
geometries and structures that would require vast computational resources with existing approaches.    
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1 Introduction 
The introduction and rapid expansion of wireless local 
area networks (WLAN) and metropolitan area 
networks, over the last few years, has resulted in a 
considerable progress of wideband communications 
for both personal and corporate, or academic use. 
However, compared to conventional broadcasting, the 
characterization of the channel has become extremely 
complex. For example, both in urban or indoor 
communications, the multipath effect becomes so 
pronounced, that in many cases it causes not only 
fading and other forms of attenuation, but also serious 
degradation of the signal integrity, due to different 
propagation delays for each signal path, i.e. the so- 
called delay spread. Therefore, it is highly important to 
perform a thorough analysis of the propagation 
characteristics in the complex urban or indoor 
environment, in order to predict the received signal 
accurately and efficiently, especially in the case of 
broadband communications.           
 Several empirical models for the modeling of 
propagation in either urban or indoor environment 
exist and are usually based on a combination of 
simplified calculations and extensive measurements 
[1], [2]. However, these models give only a rough and 
in many cases unreliable estimate of the received 
signal strength, especially in the cases where the exact 

geometric configuration of buildings and the 
construction materials are not considered. Therefore, 
more accurate field prediction techniques have been 
sought, which has led to a wide class of ray-tracing 
techniques [3]-[7]. Such techniques are definitely the 
state of the art in the analysis of propagation in urban 
or indoor channels and are extensively applied. 
However, they are still based on simplified 
approaches, i.e. simple reflection, refraction and 
diffraction models, while the number of rays that has 
to be considered is, sometimes, excessive and requires 
vast computational resources. The quest for more 
accurate and widely applicable full-wave models is, 
thus, a matter of further investigation.     
  In this paper, we present a quite unusual 
electromagnetic formulation, based on a three 
dimensional Parabolic Equation (PE) approach [8]-
[13]. The method presented is used to calculate the 
electromagnetic field in the interior of a building, 
taking into account wall structures, doors or other 
obstacles. The use of the parabolic equation model 
enables a radical reduction of unknowns, compared to 
a direct 3D treatment of Maxwell or Helmholtz 
equations, which would have been computationally 
prohibitive. The use of the parabolic equation enables 
the treatment of the 3D problem as a sequence of 
successive 2D problems, while the different 



mechanisms of field propagation, such as direct wave, 
reflection, refraction or diffraction are automatically 
taken into account, without the necessity of 
considering separate rays or propagation paths. Of 
particular significance is the use of the Finite Element 
Method (FEM) to model the wave propagation in the 
planes normal to the propagation direction, which 
enables accurate and fully automated treatment of 
complex objects, compared to more conventional 
models, based on finite differences or the Fourier 
Transform. The proposed technique is successfully 
applied to characteristic indoor wave propagation 
problems.     
 
 
2  The Parabolic Equation Model  
2.1  The Paraxial Approximation 
 The basic concept that facilitates the application of 
a full wave model in realistic propagation problems, 
where the computational domain spans several 
wavelengths in all directions, is the assumption that the 
wave propagates only within a narrow cone centered 
along a main direction of propagation. This is fully 
justified in microwave radiolinks, due to high antenna 
gains and narrow beamwidths. At first glance, this 
assumption may sound restrictive, but a general 
propagation problem, involving many paths can be 
easily decomposed to a reduced set of basic directions. 
Under the aforementioned hypothesis, the electric field 
can be expressed in terms of a slowly varying envelope 
and a phase variation along the main direction, which 
is assumed to be toward the x-axis, i.e. 
 
   xjkezyxzyx 0),,(~),,( −= EE   (1) 
 
The wave envelope ),,(~ zyxE  incorporates all slower 
field variations, while (1) holds only for relatively 
small angles of propagation. By introducing (1) to the 
Helmholtz equation, a similar equation is obtained for 
the slowly varying envelope, involving both first and 
second order derivatives, with respect to the direction 
of propagation. By applying the paraxial 
approximation, the second order variations are 
considered negligible and the parabolic equation   
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is obtained.   
 For the computational implementation of (2), a 
discretization is performed along the x-axis, using 
central differences. Hence, the first order derivative is 
approximated via 
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where x∆  is the propagation step. Its values can be of 
the order of the wavelength or more, since (2) involves 
slower field variations along the propagation path. Due 
to the central differencing implied in (3), the values of 
the other two terms in (2) have to be considered also in 
the middle between the propagation planes i and i+1. 
However, the resulting scheme is marginally stable, 
hence we implement the Crank-Nicholson approach, in 
which the value of any quantity, F , within the interval 

)1,( +ii  is approximated by 
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It can be proven that if 21≥a  this method is 
unconditionally stable (regardless of the propagation 
step). For the best accuracy, we usually choose values 
slightly greater than 0.5. Under the assumptions 
presented, the parabolic equation can be written, in 
discretized form along the propagation path as 
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2.2  Wide Angle Correction 
The paraxial approximation has the drawback of being 
correct only for small angles around the propagation 
direction. However, a significant correction that 
extends the use of the parabolic equation for angles up 
to 30 degrees is readily available, if we do not consider 
the second order variations of the envelope negligible. 
Hence, the Helmholtz equation takes the form    
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To dispense with the second order derivative we 
simply use an operator notation and solve (6) in terms 
of the first order derivative, i.e.   
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which can be thought of as a recursive relation. When 
applied again in (6) we get the wide angle parabolic 
equation  
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The latter one is discretized in exactly the same way, 
hence (3) is introduced for the propagation step, while 
the Crank-Nicholson scheme is, similarly, applied. It is 
interesting and surprising to note that (8) results in 
exactly the same form (5) provided that the Crank-
Nicholson parameter is replaced by the modified wide-
angle parameter 
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Therefore, the very simple replacement (9) to (5) is 
sufficient to account for propagation angles up to 30 
degrees with respect to the main axis, without any 
further modification. This wide angle approach is 
essential to the application to realistic outdoor to 
indoor propagation problems. Although the transmitter 
may be at a distance long enough to ensure 
propagation along a main axis, deviations from this 
main propagation route are naturally expected in the 
complex indoor environment and have to be taken into 
account.  
 
2.3  Mesh Termination with PML 
One of the fundamental requirements of the 
computational technique is the application of an 
appropriate mesh termination method to truncate the 
infinite domain. In the case of a parabolic equation 
based marching scheme, the importance of a highly 
accurate absorbing boundary condition becomes much 
more evident, due to possible accumulation of 
reflection errors. Thus, it seems that the most 
appropriate choice is the implementation of the 

perfectly matched layer (PML) and especially its 
anisotropic rendition [14], which is more appropriate 
for finite element approaches.    
 In particular, the anisotropic PML is defined by its 
permeability and permittivity tensors 
 
  Λ= 0µµ , Λ= 0εε   (10) 
 
where the matrix Λ  has been determined to provide 
zero reflection for incident waves of arbitrary angles of 
incidence. It can be shown that for a PML region 
normal to the y- and z-axis, (Fig. 1) it is given by  
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respectively, whereas for a corner region, 
 

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=ΛΛ=Λ

zy

yz

zy

zy

ss
ss

ss

00
00
00

   (12) 

 
The PML parameters can be, virtually, arbitrary, 
however they should have a properly chosen imaginary 
part to provide the necessary absorption. In most cases, 
the imaginary part has a gradual profile from zero to 
the maximum value, i.e. 
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where d is the PML width, y the distance from where it 
starts and normal to its boundary and δtan  a 
sufficiently large loss tangent. In finite difference 
codes this is very important, since a material 
discontinuity would cause severe dispersion effects. In 
finite element formulations, though, we can chose a 
constant PML profile. It has been numerically verified 
that this choice does not cause any considerable 
dispersion error, whereas is contributes to enhanced 
absorption properties.  
 The inclusion of the PML scheme to the parabolic 
equation is easily performed if we lay out the modified 
Helmholtz equation including the PML,   
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and apply simple calculus to the resulting equation. 
The latter one is decomposed in three components, 
from which, only those transverse to the direction of 
propagation are kept to the formulation. From (14) we 
easily derive the scalar equations for each component 
and, finally, by applying the paraxial approximation, 
the resulting equation, in terms of the transverse 
component is 
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where 2/)( 2

0
2

1 kkjc −−=  and 02 2/ kjc −= . Thus, (15) 
holds for the entire domain, if we simply use the 
appropriate values for zy ss ,  according to Table I. The 
generic parameter, s, in Table I is given by either (13) 
or a constant with a sufficiently large imaginary part.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1. Perfectly matched layer regions 
 

Table I. Values of sx and sy 

Region sy sz 
I 1 1 
II s 1 
III 1 s 
IV s s 

 
 
2.4  Finite Element Discretization 
Having discretized the parabolic equation along the 
paraxial direction, we can now focus on the 

discretization of the problem on the transverse plane, 
which will result in the calculation of the field values 
at any plane xxx ∆+= 0 , provided that the field on the 
previous plane 0x  is known. In our case we have 
considered a scalar version of (15), by keeping only 
the vertical component, since in most cases the 
polarization is vertical. To account for possible 
polarization coupling in very complex obstacles, it is 
easy to incorporate both components in the finite 
element approach. 
 By applying a standard Galerkin procedure to (15), 
along with the Crank-Nicholson scheme (5) and the 
wide angle correction (9) we get the final system of 
equations 
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where iE  is the column vector the wave envelope  
values at the nodes of the finite element mesh on the i-
th plane, S , T  are the stiffness and mass FEM 
matrices and the constants 1c , 2c  and WAa  have been 
defined above. Hence, at each step, the values of the 
previous plane act as an excitation and an FEM 
problem is solved to provide the solution at the next 
step. 
 In our case, the Finite Element Method is a perfect 
choice when it comes to obstacles of complex shape, 
due to its simplicity and versatility in dealing with 
changes in the geometry of the cross section, as the 
scheme marches towards the direction of propagation. 
The use of finite differences would be particularly 
difficult in dealing with grids that change as the 
method evolves towards the propagation path. In our 
case, we have used an automatic mesh generation, 
based on the Delaunay algorithm, which is performed 
each time the geometry of the cross section changes. 
Then, a simple interpolation is done to project the 
values of the previous plane to the new mesh and, 
finally, (16) is solved to provide the field values at the 
next step. Of course, when a change in the geometry of 
the cross section is encountered, the FEM matrices 
also change and have to be recomputed for the new 
mesh. 
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3  Computational Results  
3.1  Performance evaluation of the PML 
Before considering the application of the proposed 
algorithm in the presence of obstacles, we present the 
problem of a gaussian beam that propagates at a 
distance of several wavelengths. This is a simple test 
but is, actually, the worst case, since it involves 
propagation at grazing incidence  which may degrade 
the PML performance. Moreover, this model has an 
analytical solution and can serve as a validation for our 
algorithm. In Fig. 2 we present a comparison between 
the analytical solution and the results obtained by a 
PML termination. Evidently, its performance is 
considered excellent even in this case, where almost 
the entire transmitted power has passed through the 
computational window. The situation is expected to be 
much better in cases of wide angle reflection or 
diffraction from obstacles, since those waves will not 
hit the PML at a grazing angle.    
 

 

 

 
 
Fig. 2. Propagation of a gaussian beam at a distance of 
100λ , within a 33λ ×17λ  window: (a) Analytical 
solution, (b) gradual PML profile, (c) constant PML 
profile   
 

3.2  Three-Dimensional Room Model 
The fully 3D model problem that has been chosen to 
demonstrate the method's potential is a structure of a 
single room of realistic dimensions (2×2.5×3m). 
However all the essential attributes of the method are 
demonstrated in this model, since the walls and their 
thickness are correctly represented and any more 
complex building configuration could be constructed 
using the single room as a fundamental block. The 
frequency of operation is that of a typical WLAN, i.e. 
2.54 GHz. A plane wave from an external directive 
antenna is assumed to enter the room. Fig. 3 shows a 
characteristic cross section of the room, discretized via 
finite elements, where it is obvious how the plane 
crosses the walls. Thus, the importance of using FEM 
is clear, since any structure of this kind is discretized 
automatically. In Fig. 4 and 5, two characteristic 
graphs of the field distribution inside and behind the 
room are shown.    
 

 
 
Fig. 3. A characteristic cross section of a room and its 
walls, perpendicular to the propagation path and its 
FEM mesh 
 

 
 
Fig. 4 Field distribution inside the room  

 



 
 

Fig. 5 Field distribution behind the room 
 
 
4  Conclusions  
We have successfully applied a 3D parabolic equation 
formulation to the analysis of model wave propagation 
problems in indoor communication environments. 
Through the use of an FEM approach for the 
transverse problem, the complexity and variation of 
the propagation channel has been dealt with easily and 
automatically, while the PML boundary condition has 
provided an excellent means of mesh truncation. The 
presented methodology serves as a fundamental tool 
for characteristic models of wave propagation along a 
main direction but has also the advantage of taking 
into account all mechanisms of propagation like 
reflection, diffraction or scattering, without 
considering separate rays as the conventional ray- 
tracing approximation does. Moreover, it is open to 
more general extensions, dealing with several basic 
propagation axes and is expected to provide an 
accurate means of indoor channel characterization and 
optimization.  
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