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Abstract: - This paper presents a, common, unified approach to solve either the test sequence compaction 
problem or the power minimization problem during circuit testing. This approach is based on an exact Branch 
and Bound algorithm that exploits information from the respective problems. In particular decision making 
during the Branch and Bound method follows some rules devised so as to avoid unnecessary choices and thus 
reducing the search space. Experimental results that are presented, comparing the proposed algorithm with 
other solvers from literature, show the effectiveness of the proposed method. 
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1  Introduction 

In several areas in Electronic Design Automation 
[1] (circuit synthesis, test generation, layout, etc) the 
computation of the optimum solution of a problem 
may be of great importance. Most of these problems 
are NP-complete so in order for one to be able to 
find an optimal solution of large-size instances, 
methods to effectively prune the search space need 
to be devised. 

Here we’ll concentrate on two problems from the 
field of Electronic Design Automation: the 
compaction of Test Sequences for sequential circuits 
[2, 5, 7] and the power minimization problem during 
testing for CMOS sequential circuits [3, 4]. For 
these two problems there have been developed many 
methods some of which rely on genetic algorithms 
[2, 7], others on various heuristics [4] or on exact 
methods using Branch and Bound (B&B) techniques 
[5, 6, 9]. 

In this paper we propose an exact algorithm as a 
common algorithmic framework for solving both 
problems. Our method is based on a specialized 
B&B algorithm that exploits the special structure of 
sequential test sets in order to further prune the 
search space, by carefully avoiding non-solution 
areas. The algorithm converges to the desired 
solution faster than the standard B&B algorithms, 
thus enabling the effective solution of larger 
instances of these problems. 

The paper is organized as follows: In section 2 are 
presented the two problems. In section 3 the main 
lines of our method are analyzed. In section 4 the 
proposed overall method is presented. In section 5 

experimental results are given, supporting the 
potential of the proposed method. 
 
 
2 Problem Formulation 

Given a VLSI sequential circuit let the test set 
T=[S1, S2,…, Sn], consisting of the n test sequences 
Si, detect the m possible faults fi of the circuit 
denoted by the set F=[f1, f2,…,fm] (Fig. 1). Our 
problem is to properly select sequences or 
subsequence parts from T so as to cover all faults 
from F with minimum cost.  

In our analysis the cost may represent either the 
sum of test vectors in the final solution (when the 
purpose is to minimize the testing time and the 
problem is known as test sequence compaction), or 
the number of circuit transitions after applying a 
selected set of subsequences during circuit testing 
(when the problem is to select those test vectors that 
minimize the power dissipated during circuit 
testing). Both problems belong to the category of Set 
Covering problems, for which various algorithms [3, 
5, 8, 9] have been devised. 

In our case, a common algorithmic framework is 
proposed here to solve either of the above problems. 
From the sets T and F a matrix Dmn (see example 
Fig. 2) is built where the m faults fi form the rows, 
the n sequences Sj form the columns and the entries 
dij are the cost for covering fault fi by selecting the 
corresponding subsequence of Sj. This matrix is 
known in the literature either as Covering Matrix [5] 
(test sequence compaction) or as Transition 
Covering Matrix [4] (power minimization). 
 



Example 
Let the test set T=[S1, S2, S3] of Fig. 1 cover the 

set of faults F={f1, f2, f3} of a given sequential 
circuit. Let us consider the case where the costs dij 
represent the number of vectors in each subsequence 
participating in the final solution (i.e. we have a test 
sequence compaction problem). 

Fig.1. A set of test sequences 

From the test set of Fig.1 we build the Covering 
Matrix [5] of Fig.2. 
 

 S1 S2 S3  S1 S2 S3 

f1 d11 d12 d13  7 4 3 
f2 d∞ d22 d23  ∞ 7 5 
f3 d31 d32 d33  4 1 4 

Fig. 2. Covering Matrix D33 

The problem, now, is to select from D 
subsequences Sik containing the first k vectors so 
that all faults fi are detected (covered) with the 
minimum total number of test vectors. Equally well, 
in a power minimization problem dij represent the 
number of transitions. 
 
 
3 Proposed Methodology 

Let, at a stage of the algorithm, the following 
subsequences have been selected (decisions) from 
matrix Dmn (see example Fig. 2): (1) dij part from 
sequence Sj in order to cover fault fi, (2) dpk part 
from sequence Sk in order to cover fault fp, (3) dqm 
part from sequence Sm in order to cover fault fq and 
(4) neither of the selected subsequences contains 
more than one from the boundary (top) faults fi, fp, 
fq. Some sequences may not be selected at all, like 
Sr. This selection may be depicted by Fig 3. It must 
be noted that this selection covers not only faults fi, 
fp and fq but, also, all faults that are contained within 
these subsequences. 

The above selection imposes an ordering 
(decending) on the subsequences (Fig 3) and so an 
ordering on the decisions. This ordering should be 
respected in order to avoid examining multiple times 
the same sequence of selections. As seen from Fig 3, 
this selection divides the search space into two 
subspaces: subspace A containing the selected 
subsequences and subspace B containing the 
unselected or the remaining upper parts (higher cost) 

of the selected subsequences. Let us assume that the 
selection of Fig. 3 covers all faults from F, with a 
total cost upper_cost= dij + dpk + dqm. Since all faults 
have been covered by this selection the next step to 
proceed in order to search for the solution with the 
minimum upper_cost is to try to exchange a selected 
subsequence (from subspace A) that covers a 
boundary fault by another subsequence that covers 
the same fault. Since we need to cover all faults in F, 
after the removal of an already selected subsequence 
we have, by solution construction (requirement 4), 
that there is not in subspace A a subsequence that 
covers the boundary fault after the removal of it’s 
respective subsequence. Therefore we must select 
(in order to cover at least this boundary fault) a 
subsequence from subspace B. Furthermore, the new 
subsequence from subspace B should not cover 
more than one boundary fault. 

Our method starts by exchanging subsequence Sm 
and then proceeds to the left of Fig. 3 exchanging 
subsequences Sk and Sj. 

For example in Fig. 3 let us try to exchange the 
selected part dpk of sequence Sk which covers the 
boundary fault fp. There are 4 cases to consider: 

I) There is a sequence Sr (unselected sequence 
from subspace B) which contains fp with part dpr < 
d∞ and does not cover another boundary fault to the 
left of fault fp (i.e. dpr <dir ≤ d∞). 

II) There is a sequence Sr (unselected sequence in 
subspace B) which contains fp with dpr < d∞ and 
covers another boundary fault (i.e. dir < dpr < d∞). 

III) There is a sequence Sj (selected sequence 
which contains fp with subsequence part dpj < dij < 
d∞) and covers another boundary fault fi. 

IV) There is a sequence Sj (selected sequence 
which contains fp with subsequence part dij < dpj < 
d∞) and covers another boundary fault fi. 

Case III) contradicts to the way the subsequences 
in subspace A were selected and is disregarded. 
Case II) also contradicts to the way the 
subsequences in subspace A were selected because 
we would exchange dpk with a subsequence dpr that 
covers a boundary fault (fi) of a different 
subsequence (Sj).  

Case (IV) selects a larger part from a selected 
subsequence leading to a new subsequence part dpj 
that merges the older boundary fault fi. 

Therefore, only in cases (I) and (IV) we go and 
make the exchange. 

In order to ensure search space completeness for 
the above subsequence exchanges, a B&B algorithm 
is employed. The above subsequence exchanging 
process is formulated with the following two Rules 
which are used within the B&B algorithmic 
environment: 
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Rule I: Given an initial decision (fi, dij) every 
other decision (fp, dpk) with k≠j (subspace B Fig. 3) 
is valid wrt the initial decision if d∞ ≥ dik > dpk. 

Rule II: Given an initial decision (fi, dij) every 
other decision (fp, dpk) with k=j is valid wrt the 
initial decision if dik < dpk < d∞ (i.e. lies in subspace 
B Fig. 3). 

Fig. 3  Subsequence selection 
The Rules I and II constitute the validity analysis 

(section 3.1) which is used in our Branch and Bound 
algorithm. If either Rule I or II is invalidated (i.e. a 
selection is attempted from within subspace A) then 
we denote this case as invalid and we say that a 
conflict has occurred. In case of a conflict our 
selection method backtracks immediately and 
searches for another choice. In this way, our 
searching method adds to the standard bound 
conflicts the new bound conflicts due to the validity 
analysis (section 3.1) 

Let us apply the above subsequence exchange 
process to the example of Fig. 1: 

For this example we have six possible decision 
orderings for the 3 faults f1, f2, f3: (I) f1, f2, f3, (II) f1, 
f3, f2, (III) f2, f3, f1, (IV) f2, f1, f3, (V) f3, f2, f1, (VI) f3, 
f1, f2. For example the ordering (I) (Fig. 5) gives the 
search tree of Fig. 4. A standard B&B algorithm 
would make an initial subsequence selection with 
cost upper_cost and then would try to bound the 
searching by using the upper_cost. By adding the 
Rules (I, II) we have developed to the standard B&B 
algorithm we will need to consider fewer test cases. 
For example let us suppose that, initially we selected 
d11 to cover f1 (Fig. 1). According to Rule I the 
choices d22 for f2 and d23 for f2 are immediately 
crossed out because it is: d∞ > d22 > d12 and d∞ > d23 
> d13. Therefore our B&B algorithm would 
backtrack and select other subsequence (d12, d13) for 
f1. With similar to the above analysis our algorithm 
drops of all selections marked by dashed lines. 
Therefore from the initial six different choices (each 

leaf boxed-node denotes a possible solution by 
considering the encountered decisions along the path 
from the tree root to the respective leaf node) we 
only have to examine (search) three (i.e. we have a 
50% reduction in the number of search nodes).  

In Fig. 5 are given several orderings of the faults 
f1, f2, f3, and in table form, the decision tree and for 
every selection a result (column ‘Validity Analysis’) 
after applying Rules (I, II). From Fig. 5 we see that 
the decision orders (III) [f2, f3, f1] and (IV) [f2, f1, f3] 
give the smallest decision trees of size 2 (only 2 
decisions need to be searched-analyzed) while order 
(VI) in Fig. 5 [f3, f1, f2] gives the largest decision 
tree having a total of 14 search nodes (choices). 

Fig. 4. Search tree for ordering (I) 
A/A Order I Validity Analysis 

1 f1,d11 f2,d22 conflict 
2 f1,d11 f2,d23 conflict 
3 f1,d12 f2,d22 valid 
4 f1,d12 f2,d23 conflict 
5 f1,d13 f2,d22 conflict 
6 f1,d13 f2,d23 valid 

 
A/A Orders III, IV Validity Analysis 

1 f2,d22 valid 
2 f2,d23 valid 

 

A/A Order VI Validity 
Analysis 

1 f3,d31 f1,d11 f2,d22 conflict 
2 f3,d31 f1,d11 f2,d23 conflict 
3 f3,d31 f1,d12 f2,d22 conflict 
4 f3,d31 f1,d12 f2,d23 conflict 
5 f3,d31 f1,d13 f2,d22 conflict 
6 f3,d31 f1,d13 f2,d23 conflict 
7 f3,d32 f2,d22  valid 
8 f3,d32 f2,d23  conflict 
9 f3,d33 f1,d11 f2,d22 conflict 

10 f3,d33 f1,d11 f2,d23 conflict 
11 f3,d33 f1,d12 f2,d22 conflict 
12 f3,d33 f1,d12 f2,d23 conflict 
13 f3,d33 f1,d13 f2,d22 conflict 
14 f3,d33 f1,d13 f2,d23 valid 
Fig. 5. Validity Analysis for the example 
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3.1 Validity Analysis 
The chain of decisions may be represented by a 

decision tree, with each node leading to a smaller 
problem that needs to be solved. Any path from the 
tree root (initial problem) towards the leaves 
represents a solution i.e. all faults in F are covered 
(section 2). A decision node contains the pair (fi, dij) 
denoting that in order to cover fault fi (i-row) a 
subsequence of j is selected with cost (vectors or 
transitions) dij (subspace A in Fig. 3). 

During this validity analysis step which is 
incorporated into the Branch and Bound process, it 
is checked that the next to try (new) decision (fp, dpk) 
is in accordance with Rules I and II (section 3). This 
is accomplished by testing the new decision with all 
previously-made decisions. In case of a conflict 
(section 3) one of the valid choices (for fault fp) 
should be considered. 

A schematic application of this validity analysis 
was presented in Fig. 5, were we were able to 
observe the prunning of the search space. As we will 
see, also, such reductions are confirmed by the 
experimental results (section 5). 

In the case where all possible choices for a fault fp 
are not valid then we say that this fault is blocked by 
previously-made decisions. For example let us 
assume that we have (Fig 6) the ordered sequence of 
decisions: (fi, dij), (fp, dpr), (fq, dqk). Also, let the 
decision (fp, dpr) producing a conflict to (fq, dqk) and 
the decision (fi, dij) producing a conflict to (fq, dqm). 
The fault fq is blocked and some of the previously 
made decisions don’t belong to the minimum 
solution (see Lemma 2).  

In the event of a blocked fault our B&B algorithm 
backtracks to the nearest (most recent) decision (fp, 
dpr) (chronological backtrack) that is a source of 
conflict, to some choices for fault fp, and makes an 
alternative selection. In the case where this decision 
is not the immediately previous one we will have a 
non-chronological backtrack [6] step. 

Fig. 6.  A decision tree with blocked fault fq  

The above steps may be coded into the following 

rule: If a fault fp is blocked, revert to the most 
recent decision that contributes to the blocking of 
fault fp and select another candidate. 

In our algorithm we make use of the following 
remarks: 

Lemma 1: The minimum solution is not affected 
by the validity conditions. 

Proof: Let’s assume that the minimum solution 
[(fi, dij)...(fp, dpk)] doesn’t respect the validity 
conditions. We have two cases to consider: 

I) k=j, dik < dpk ≤ d∞, i.e. fault fi is covered by a 
subsequence of k sequence with length (cost) dpk and 
therefore this makes redundant the previous selected 
subsequence of sequence j with length (cost) dij. 
(contradiction due to the minimum solution). 
ΙΙ) k ≠ j, dpj < dij < d∞, i.e. fault fp is covered 

(without extra cost) by the subsequence of sequence 
j with length (cost) dij. 

Lemma 2: If a fault is blocked then at least one of 
the previously-made decisions involved in the 
blocking of the fault does not belong to the 
minimum solution. 

Proof: It follows from Lemma 1. 
Lemma 3: If all available choices for a fault fi 

cause the blocking of another fault fq then at least 
one of the previously-made decisions (before fault 
fi) does not belong to the minimum solution and a 
backtrack step is necessary in order to change some 
previously (before fault fi) made decision. 
Proof: It follows from Lemma 2. 

Lemma 4: A Branch and Bound algorithm applied 
to the problem of compacting a set of Test 
Sequences enhanced with the validity analysis is a 
complete algorithm. 

Proof: From Lemma 1 and the validity analysis 
only decision nodes that violate the validity 
conditions are ignored and therefore the optimal 
solution is retained.  
 
 
4  The Overall algorithm 

The proposed algorithm consists of the following: 
procedures: 

1) Formulation of the Covering Matrix (section 2) 
from the given test sequences by fault simulating 
each sequence. 

2) Heuristic computation of an initial solution (i.e. 
computation of an initial upper bound) using the 
MinMax algorithm [4]. This initial solution is used 
to seed the following B&B algorithm. 

3) A B&B (ImprBB) algorithm equipped with the 
validity analysis step (section 3.1) tries to select a 
subset of subsequences, which cover all faults with 
the smallest possible cost (number of vectors, 
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number of transitions). In our Branch and Bound 
algorithm for every decision the minimum cost 
choice is explored first. The reason will be explained 
with the help of Fig. 7. 

In Fig.7 we have a sequence of decisions 
(decision tree) leading to an initial solution: { (fi,dij), 
(fp, dpr), (fq,dqk) }. As we proceed from fq and 
upwards Hq=dqk is an upper bound for the set of 
faults Fq covered by the choice of (fq, dqk). If dqk is 
the minimum (least) cost choice to cover fault fq 
then Hq will be also a lower bound for the set Fq and 
the remaining choices (to the right of dqk in Fig. 7) 
may be skipped. Therefore, by selecting for every 
decision the minimum cost choice we may prune 
earlier the search space. Also certain branches are 
pruned due to the validity analysis (section 3.1) 

Fig. 7.  Example of a decision tree 

In ImprBB algorithm the following bound 
conflicts can be identified: a) bound conflicts as 
encountered in a standard B&B method and b) 
bound conflicts (identified without search) due to 
validity analysis (section 3). The bound conflicts 
occur when the lower bound (lower_bound) is 
higher than or equal to the upper bound 
(upper_cost). This condition may be written as: 

path_cost + lower_bound ≥ upper_cost, 
where: path_cost : is the cost of already-made 

decisions, lower_bound : is an estimate on the cost 
of covering the rows (faults) not yet covered. 

Since the problems to be solved (test sequence 
compaction, power minimization during circuit 
testing) belong to the NP-complete class, certain 
limits are set to ImprBB and a flag is raised 
whenever ImprBB exceeds these limits: (a) a time 
limit of 10 min, and (b) a limit on the total number 
of backtracks of 106 nodes (i.e. number of different 
search decisions that are analyzed). 
 

 
5  Experimental Results 

Our algorithm ImprBB has been implemented in 
C. The efficiency of the algorithm was measured by 
running the ISCAS'89 benchmark circuits [10] on a 
Pentium III PC with 256 Mb. 

In Table 1 are presented the Original Problem 
(#seq. is the number of sequences, #faults are the 
detected faults and #vectors is the total amount of 
vectors) that were obtained from [7]. Also for every 
example the Minimum Test Set is computed by a 
B&B method [5]. 

As a first experiment, a standard B&B algorithm 
from literature [11] is applied on the test sets of 
Table 1. The Time limit is set to 20 min per 
instance: Unfortunately, and for all the examples, 
this algorithm failed to produce the minimum 
solution in the given time limit. 

On top of this standard B&B algorithm we build 
our proposed B&B algorithm ImprBB (section 4). 
This was done, in order to evaluate the actual 
performance of our method with respect to the 
standard B&B which is not attributed to 
implementation issues. 

The results obtained by ImprBB are presented in 
Table 1. Under column ‘Time’ we have the time 
required to solve the respective problem and under 
column ‘#Backtracks’ we have the total number of 
unsuccessful searches before proving the optimality 
of the solution. As we see, our method manages to 
solve to optimality all of the given examples and at 
reasonable times.  

As a next experiment we applied on the same set 
of examples two other efficient algorithms from 
literature: algorithm MINCOV which is used in the 
logic synthesis package of ESPRESSO [9] and a 
method that solves ILP problems, glpsol-4.8 (GLPK 
package [13]). In the literature there are several 
attempts to combine the strength of general purpose 
ILP methods with problem specific knowledge from 
Electronic Design Automation [12]. Having these 
methods as a guide we applied the ILP solver glpsol-
4.8 to our own problem instances. 

From Table 1 we have that MINCOV solves all 
but two of the larger examples (s35932, s38584), 
while glpsol-4.8 fails to solve four examples (s3330, 
s6669, s35932, s38584).  

Comparing the results of our method ImprBB and 
those of MINCOV and glpsol-4.8, we observe that: 
a) ImprBB succeeds in solving all examples, 2) in 
smaller time (actually ImprBB is faster than 
MINCOV and glpsol-4.8 by 2 to 3 orders of 
magnitude) and 3) by searching fewer decisions 
(column #Backtracks). 
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Table 1. Experimental results for GATTO [7] Test Sets 

 
6  Conclusion 

The development of methods that exploit problem 
specific knowledge gives leverage over more 
general purpose algorithms. In this paper, a common 
algorithmic framework is presented that handles the 
problems of test sequence compaction and power 
minimization during circuit testing. In this 
framework an exact method consisting of a specially 
designed Branch and Bound algorithm to handle 
these specific problem instances is shown to be 
more effective than general purpose solvers. 
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#vectors #seq #vectors Time(s) #Backtracks Time(s) #Backtracks Time(s) #Backtracks
s510 989 7 239 0,02 26 1,12 55 6 571
s953 1099 32 541 0,14 307 1,69 173 13,8 1145
s967 1223 31 671 0,07 153 1,65 237 15 1150
s991 448 9 367 0,02 10 0,76 21 6 866
s1196 1805 74 1126 0,32 713 2,79 1808 21 1511
s1238 1554 74 1006 0,23 694 6,04 3815 16,8 1471
s1269 450 29 247 0,12 255 2,73 1181 15,6 1484
s1423 2691 28 1281 0,12 35 2,04 62 19 1521
s1488 1824 19 948 0,1 50 4,39 73 46 1502
s1494 1244 19 654 0,12 20 2,5 41 24,2 1481
s3271 2529 50 1180 1,22 1068 35,21 1879 230,8 3455
s3330 2028 43 1069 0,47 398 16,02 1716 - -
s3384 888 22 412 0,31 61 12,61 209 114 3164
s4863 1533 41 747 1,5 968 157,18 4389 337 4686
s5378 919 42 495 0,5 191 15,31 453 138,6 3434
s6669 592 36 303 1,42 865 32,85 540 - >13200
s13207 544 9 189 0,23 23 3,7 23 31,8 2018
s15850 153 3 93 0,12 17 0,3 23 1,8 661
s35932 903 8 310 13,8 23 - - - -
s38417 1617 30 686 6,1 2520 224,28 1515 630 7125
s38584 8065 105 3808 48 5861 - - - -

MINCOV glpsol-4.8ImprBBMinimum   

6507 x 64
1994 x 34

2336 x 108
3096 x 58

4482 x 112
3271 x 71

659 x 10

18390 x 271

34302 x 59
6516 x 95

1019 x 72
857 x 20

3188 x 132

1200 x 133
1227 x 133
1306 x 52

1418 x 107
1422 x 65
1412 x 62

circuit
#faultsx#seq

551 x 37
1044 x 75

Original Problem


