
Search Space Pruning Techniques in ATPG for VLSI Circuits

MICHAEL DIMOPOULOS, PANAGIOTIS LINARDIS
Department of Informatics

Aristotle University of Thessaloniki
GR-54006 Thessaloniki

GREECE
 http://www.csd.auth.gr

Abstract: - This paper presents a, common, unified approach to solve either the test sequence compaction
problem or the power minimization problem during circuit testing. This approach is based on an exact Branch
and Bound algorithm that exploits information from the respective problems. In particular decision making
during the Branch and Bound method follows some rules devised so as to avoid unnecessary choices and thus
reducing the search space. Experimental results that are presented, comparing the proposed algorithm with
other solvers from literature, show the effectiveness of the proposed method.

Key-Words: - Sequential Digital Circuits, Sequence Compaction, Test Generation, Set Cover methods.

1 Introduction

In several areas in Electronic Design Automation
[1] (circuit synthesis, test generation, layout, etc) the
computation of the optimum solution of a problem
may be of great importance. Most of these problems
are NP-complete so in order for one to be able to
find an optimal solution of large-size instances,
methods to effectively prune the search space need
to be devised.

Here we’ll concentrate on two problems from the
field of Electronic Design Automation: the
compaction of Test Sequences for sequential circuits
[2, 5, 7] and the power minimization problem during
testing for CMOS sequential circuits [3, 4]. For
these two problems there have been developed many
methods some of which rely on genetic algorithms
[2, 7], others on various heuristics [4] or on exact
methods using Branch and Bound (B&B) techniques
[5, 6, 9].

In this paper we propose an exact algorithm as a
common algorithmic framework for solving both
problems. Our method is based on a specialized
B&B algorithm that exploits the special structure of
sequential test sets in order to further prune the
search space, by carefully avoiding non-solution
areas. The algorithm converges to the desired
solution faster than the standard B&B algorithms,
thus enabling the effective solution of larger
instances of these problems.

The paper is organized as follows: In section 2 are
presented the two problems. In section 3 the main
lines of our method are analyzed. In section 4 the
proposed overall method is presented. In section 5

experimental results are given, supporting the
potential of the proposed method.

2 Problem Formulation

Given a VLSI sequential circuit let the test set
T=[S1, S2,…, Sn], consisting of the n test sequences
Si, detect the m possible faults fi of the circuit
denoted by the set F=[f1, f2,…,fm] (Fig. 1). Our
problem is to properly select sequences or
subsequence parts from T so as to cover all faults
from F with minimum cost.

In our analysis the cost may represent either the
sum of test vectors in the final solution (when the
purpose is to minimize the testing time and the
problem is known as test sequence compaction), or
the number of circuit transitions after applying a
selected set of subsequences during circuit testing
(when the problem is to select those test vectors that
minimize the power dissipated during circuit
testing). Both problems belong to the category of Set
Covering problems, for which various algorithms [3,
5, 8, 9] have been devised.

In our case, a common algorithmic framework is
proposed here to solve either of the above problems.
From the sets T and F a matrix Dmn (see example
Fig. 2) is built where the m faults fi form the rows,
the n sequences Sj form the columns and the entries
dij are the cost for covering fault fi by selecting the
corresponding subsequence of Sj. This matrix is
known in the literature either as Covering Matrix [5]
(test sequence compaction) or as Transition
Covering Matrix [4] (power minimization).

Example
Let the test set T=[S1, S2, S3] of Fig. 1 cover the

set of faults F={f1, f2, f3} of a given sequential
circuit. Let us consider the case where the costs dij
represent the number of vectors in each subsequence
participating in the final solution (i.e. we have a test
sequence compaction problem).

Fig.1. A set of test sequences

From the test set of Fig.1 we build the Covering
Matrix [5] of Fig.2.

 S1 S2 S3 S1 S2 S3

f1 d11 d12 d13 7 4 3
f2 d∞ d22 d23 ∞ 7 5
f3 d31 d32 d33 4 1 4

Fig. 2. Covering Matrix D33

The problem, now, is to select from D
subsequences Sik containing the first k vectors so
that all faults fi are detected (covered) with the
minimum total number of test vectors. Equally well,
in a power minimization problem dij represent the
number of transitions.

3 Proposed Methodology

Let, at a stage of the algorithm, the following
subsequences have been selected (decisions) from
matrix Dmn (see example Fig. 2): (1) dij part from
sequence Sj in order to cover fault fi, (2) dpk part
from sequence Sk in order to cover fault fp, (3) dqm
part from sequence Sm in order to cover fault fq and
(4) neither of the selected subsequences contains
more than one from the boundary (top) faults fi, fp,
fq. Some sequences may not be selected at all, like
Sr. This selection may be depicted by Fig 3. It must
be noted that this selection covers not only faults fi,
fp and fq but, also, all faults that are contained within
these subsequences.

The above selection imposes an ordering
(decending) on the subsequences (Fig 3) and so an
ordering on the decisions. This ordering should be
respected in order to avoid examining multiple times
the same sequence of selections. As seen from Fig 3,
this selection divides the search space into two
subspaces: subspace A containing the selected
subsequences and subspace B containing the
unselected or the remaining upper parts (higher cost)

of the selected subsequences. Let us assume that the
selection of Fig. 3 covers all faults from F, with a
total cost upper_cost= dij + dpk + dqm. Since all faults
have been covered by this selection the next step to
proceed in order to search for the solution with the
minimum upper_cost is to try to exchange a selected
subsequence (from subspace A) that covers a
boundary fault by another subsequence that covers
the same fault. Since we need to cover all faults in F,
after the removal of an already selected subsequence
we have, by solution construction (requirement 4),
that there is not in subspace A a subsequence that
covers the boundary fault after the removal of it’s
respective subsequence. Therefore we must select
(in order to cover at least this boundary fault) a
subsequence from subspace B. Furthermore, the new
subsequence from subspace B should not cover
more than one boundary fault.

Our method starts by exchanging subsequence Sm
and then proceeds to the left of Fig. 3 exchanging
subsequences Sk and Sj.

For example in Fig. 3 let us try to exchange the
selected part dpk of sequence Sk which covers the
boundary fault fp. There are 4 cases to consider:

I) There is a sequence Sr (unselected sequence
from subspace B) which contains fp with part dpr <
d∞ and does not cover another boundary fault to the
left of fault fp (i.e. dpr <dir ≤ d∞).

II) There is a sequence Sr (unselected sequence in
subspace B) which contains fp with dpr < d∞ and
covers another boundary fault (i.e. dir < dpr < d∞).

III) There is a sequence Sj (selected sequence
which contains fp with subsequence part dpj < dij <
d∞) and covers another boundary fault fi.

IV) There is a sequence Sj (selected sequence
which contains fp with subsequence part dij < dpj <
d∞) and covers another boundary fault fi.

Case III) contradicts to the way the subsequences
in subspace A were selected and is disregarded.
Case II) also contradicts to the way the
subsequences in subspace A were selected because
we would exchange dpk with a subsequence dpr that
covers a boundary fault (fi) of a different
subsequence (Sj).

Case (IV) selects a larger part from a selected
subsequence leading to a new subsequence part dpj
that merges the older boundary fault fi.

Therefore, only in cases (I) and (IV) we go and
make the exchange.

In order to ensure search space completeness for
the above subsequence exchanges, a B&B algorithm
is employed. The above subsequence exchanging
process is formulated with the following two Rules
which are used within the B&B algorithmic
environment:

f1

4

1
2
3
5
6
7 f2

f3
S1 S2 S3

f2
f3
f1

f1 f3

cost

Rule I: Given an initial decision (fi, dij) every
other decision (fp, dpk) with k≠j (subspace B Fig. 3)
is valid wrt the initial decision if d∞ ≥ dik > dpk.

Rule II: Given an initial decision (fi, dij) every
other decision (fp, dpk) with k=j is valid wrt the
initial decision if dik < dpk < d∞ (i.e. lies in subspace
B Fig. 3).

Fig. 3 Subsequence selection
The Rules I and II constitute the validity analysis

(section 3.1) which is used in our Branch and Bound
algorithm. If either Rule I or II is invalidated (i.e. a
selection is attempted from within subspace A) then
we denote this case as invalid and we say that a
conflict has occurred. In case of a conflict our
selection method backtracks immediately and
searches for another choice. In this way, our
searching method adds to the standard bound
conflicts the new bound conflicts due to the validity
analysis (section 3.1)

Let us apply the above subsequence exchange
process to the example of Fig. 1:

For this example we have six possible decision
orderings for the 3 faults f1, f2, f3: (I) f1, f2, f3, (II) f1,
f3, f2, (III) f2, f3, f1, (IV) f2, f1, f3, (V) f3, f2, f1, (VI) f3,
f1, f2. For example the ordering (I) (Fig. 5) gives the
search tree of Fig. 4. A standard B&B algorithm
would make an initial subsequence selection with
cost upper_cost and then would try to bound the
searching by using the upper_cost. By adding the
Rules (I, II) we have developed to the standard B&B
algorithm we will need to consider fewer test cases.
For example let us suppose that, initially we selected
d11 to cover f1 (Fig. 1). According to Rule I the
choices d22 for f2 and d23 for f2 are immediately
crossed out because it is: d∞ > d22 > d12 and d∞ > d23
> d13. Therefore our B&B algorithm would
backtrack and select other subsequence (d12, d13) for
f1. With similar to the above analysis our algorithm
drops of all selections marked by dashed lines.
Therefore from the initial six different choices (each

leaf boxed-node denotes a possible solution by
considering the encountered decisions along the path
from the tree root to the respective leaf node) we
only have to examine (search) three (i.e. we have a
50% reduction in the number of search nodes).

In Fig. 5 are given several orderings of the faults
f1, f2, f3, and in table form, the decision tree and for
every selection a result (column ‘Validity Analysis’)
after applying Rules (I, II). From Fig. 5 we see that
the decision orders (III) [f2, f3, f1] and (IV) [f2, f1, f3]
give the smallest decision trees of size 2 (only 2
decisions need to be searched-analyzed) while order
(VI) in Fig. 5 [f3, f1, f2] gives the largest decision
tree having a total of 14 search nodes (choices).

Fig. 4. Search tree for ordering (I)
A/A Order I Validity Analysis

1 f1,d11 f2,d22 conflict
2 f1,d11 f2,d23 conflict
3 f1,d12 f2,d22 valid
4 f1,d12 f2,d23 conflict
5 f1,d13 f2,d22 conflict
6 f1,d13 f2,d23 valid

A/A Orders III, IV Validity Analysis

1 f2,d22 valid
2 f2,d23 valid

A/A Order VI Validity
Analysis

1 f3,d31 f1,d11 f2,d22 conflict
2 f3,d31 f1,d11 f2,d23 conflict
3 f3,d31 f1,d12 f2,d22 conflict
4 f3,d31 f1,d12 f2,d23 conflict
5 f3,d31 f1,d13 f2,d22 conflict
6 f3,d31 f1,d13 f2,d23 conflict
7 f3,d32 f2,d22 valid
8 f3,d32 f2,d23 conflict
9 f3,d33 f1,d11 f2,d22 conflict

10 f3,d33 f1,d11 f2,d23 conflict
11 f3,d33 f1,d12 f2,d22 conflict
12 f3,d33 f1,d12 f2,d23 conflict
13 f3,d33 f1,d13 f2,d22 conflict
14 f3,d33 f1,d13 f2,d23 valid
Fig. 5. Validity Analysis for the example

f1

f2

X

d11

d22

: conflict

d23

d12 d13

f2 f2

d22 d23 d22 d23

X X X

X

7 6

valid choices

dij

A

Sj Sk

dpk

Sr Sm

fq

fp fi

fp

fi

fp

B

co
st

dqm

3.1 Validity Analysis
The chain of decisions may be represented by a

decision tree, with each node leading to a smaller
problem that needs to be solved. Any path from the
tree root (initial problem) towards the leaves
represents a solution i.e. all faults in F are covered
(section 2). A decision node contains the pair (fi, dij)
denoting that in order to cover fault fi (i-row) a
subsequence of j is selected with cost (vectors or
transitions) dij (subspace A in Fig. 3).

During this validity analysis step which is
incorporated into the Branch and Bound process, it
is checked that the next to try (new) decision (fp, dpk)
is in accordance with Rules I and II (section 3). This
is accomplished by testing the new decision with all
previously-made decisions. In case of a conflict
(section 3) one of the valid choices (for fault fp)
should be considered.

A schematic application of this validity analysis
was presented in Fig. 5, were we were able to
observe the prunning of the search space. As we will
see, also, such reductions are confirmed by the
experimental results (section 5).

In the case where all possible choices for a fault fp
are not valid then we say that this fault is blocked by
previously-made decisions. For example let us
assume that we have (Fig 6) the ordered sequence of
decisions: (fi, dij), (fp, dpr), (fq, dqk). Also, let the
decision (fp, dpr) producing a conflict to (fq, dqk) and
the decision (fi, dij) producing a conflict to (fq, dqm).
The fault fq is blocked and some of the previously
made decisions don’t belong to the minimum
solution (see Lemma 2).

In the event of a blocked fault our B&B algorithm
backtracks to the nearest (most recent) decision (fp,
dpr) (chronological backtrack) that is a source of
conflict, to some choices for fault fp, and makes an
alternative selection. In the case where this decision
is not the immediately previous one we will have a
non-chronological backtrack [6] step.

Fig. 6. A decision tree with blocked fault fq

The above steps may be coded into the following

rule: If a fault fp is blocked, revert to the most
recent decision that contributes to the blocking of
fault fp and select another candidate.

In our algorithm we make use of the following
remarks:

Lemma 1: The minimum solution is not affected
by the validity conditions.

Proof: Let’s assume that the minimum solution
[(fi, dij)...(fp, dpk)] doesn’t respect the validity
conditions. We have two cases to consider:

I) k=j, dik < dpk ≤ d∞, i.e. fault fi is covered by a
subsequence of k sequence with length (cost) dpk and
therefore this makes redundant the previous selected
subsequence of sequence j with length (cost) dij.
(contradiction due to the minimum solution).
ΙΙ) k ≠ j, dpj < dij < d∞, i.e. fault fp is covered

(without extra cost) by the subsequence of sequence
j with length (cost) dij.

Lemma 2: If a fault is blocked then at least one of
the previously-made decisions involved in the
blocking of the fault does not belong to the
minimum solution.

Proof: It follows from Lemma 1.
Lemma 3: If all available choices for a fault fi

cause the blocking of another fault fq then at least
one of the previously-made decisions (before fault
fi) does not belong to the minimum solution and a
backtrack step is necessary in order to change some
previously (before fault fi) made decision.
Proof: It follows from Lemma 2.

Lemma 4: A Branch and Bound algorithm applied
to the problem of compacting a set of Test
Sequences enhanced with the validity analysis is a
complete algorithm.

Proof: From Lemma 1 and the validity analysis
only decision nodes that violate the validity
conditions are ignored and therefore the optimal
solution is retained.

4 The Overall algorithm

The proposed algorithm consists of the following:
procedures:

1) Formulation of the Covering Matrix (section 2)
from the given test sequences by fault simulating
each sequence.

2) Heuristic computation of an initial solution (i.e.
computation of an initial upper bound) using the
MinMax algorithm [4]. This initial solution is used
to seed the following B&B algorithm.

3) A B&B (ImprBB) algorithm equipped with the
validity analysis step (section 3.1) tries to select a
subset of subsequences, which cover all faults with
the smallest possible cost (number of vectors,

fi
dij

fq
dqk dqm

conflict conflict
: unexplored region

fp
dpr

number of transitions). In our Branch and Bound
algorithm for every decision the minimum cost
choice is explored first. The reason will be explained
with the help of Fig. 7.

In Fig.7 we have a sequence of decisions
(decision tree) leading to an initial solution: { (fi,dij),
(fp, dpr), (fq,dqk) }. As we proceed from fq and
upwards Hq=dqk is an upper bound for the set of
faults Fq covered by the choice of (fq, dqk). If dqk is
the minimum (least) cost choice to cover fault fq
then Hq will be also a lower bound for the set Fq and
the remaining choices (to the right of dqk in Fig. 7)
may be skipped. Therefore, by selecting for every
decision the minimum cost choice we may prune
earlier the search space. Also certain branches are
pruned due to the validity analysis (section 3.1)

Fig. 7. Example of a decision tree

In ImprBB algorithm the following bound
conflicts can be identified: a) bound conflicts as
encountered in a standard B&B method and b)
bound conflicts (identified without search) due to
validity analysis (section 3). The bound conflicts
occur when the lower bound (lower_bound) is
higher than or equal to the upper bound
(upper_cost). This condition may be written as:

path_cost + lower_bound ≥ upper_cost,
where: path_cost : is the cost of already-made

decisions, lower_bound : is an estimate on the cost
of covering the rows (faults) not yet covered.

Since the problems to be solved (test sequence
compaction, power minimization during circuit
testing) belong to the NP-complete class, certain
limits are set to ImprBB and a flag is raised
whenever ImprBB exceeds these limits: (a) a time
limit of 10 min, and (b) a limit on the total number
of backtracks of 106 nodes (i.e. number of different
search decisions that are analyzed).

5 Experimental Results

Our algorithm ImprBB has been implemented in
C. The efficiency of the algorithm was measured by
running the ISCAS'89 benchmark circuits [10] on a
Pentium III PC with 256 Mb.

In Table 1 are presented the Original Problem
(#seq. is the number of sequences, #faults are the
detected faults and #vectors is the total amount of
vectors) that were obtained from [7]. Also for every
example the Minimum Test Set is computed by a
B&B method [5].

As a first experiment, a standard B&B algorithm
from literature [11] is applied on the test sets of
Table 1. The Time limit is set to 20 min per
instance: Unfortunately, and for all the examples,
this algorithm failed to produce the minimum
solution in the given time limit.

On top of this standard B&B algorithm we build
our proposed B&B algorithm ImprBB (section 4).
This was done, in order to evaluate the actual
performance of our method with respect to the
standard B&B which is not attributed to
implementation issues.

The results obtained by ImprBB are presented in
Table 1. Under column ‘Time’ we have the time
required to solve the respective problem and under
column ‘#Backtracks’ we have the total number of
unsuccessful searches before proving the optimality
of the solution. As we see, our method manages to
solve to optimality all of the given examples and at
reasonable times.

As a next experiment we applied on the same set
of examples two other efficient algorithms from
literature: algorithm MINCOV which is used in the
logic synthesis package of ESPRESSO [9] and a
method that solves ILP problems, glpsol-4.8 (GLPK
package [13]). In the literature there are several
attempts to combine the strength of general purpose
ILP methods with problem specific knowledge from
Electronic Design Automation [12]. Having these
methods as a guide we applied the ILP solver glpsol-
4.8 to our own problem instances.

From Table 1 we have that MINCOV solves all
but two of the larger examples (s35932, s38584),
while glpsol-4.8 fails to solve four examples (s3330,
s6669, s35932, s38584).

Comparing the results of our method ImprBB and
those of MINCOV and glpsol-4.8, we observe that:
a) ImprBB succeeds in solving all examples, 2) in
smaller time (actually ImprBB is faster than
MINCOV and glpsol-4.8 by 2 to 3 orders of
magnitude) and 3) by searching fewer decisions
(column #Backtracks).

fi

fp

fq

success

dij

dpr

dqk

: unexplored region

Hq

Hp

Hi

Table 1. Experimental results for GATTO [7] Test Sets

6 Conclusion

The development of methods that exploit problem
specific knowledge gives leverage over more
general purpose algorithms. In this paper, a common
algorithmic framework is presented that handles the
problems of test sequence compaction and power
minimization during circuit testing. In this
framework an exact method consisting of a specially
designed Branch and Bound algorithm to handle
these specific problem instances is shown to be
more effective than general purpose solvers.

References:
[1] M. Abramovici, M. Breuer, A. Friedman,

"Digital Systems Testing and Testable Design",
IEEE Press, 1990.

[2] M. Dimopoulos, P. Linardis, "Improving a GA-
based ATPG for Sequential Circuits by
Exploiting Dynamically Generated Essential
Sequences", in "Advances in Scientific
Computing, Computational Intelligence and
Applications", Ed. N. Mastorakis etc, WSES
Press, 2001, pp 373-377.

[3] F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza
Reorda, "A Test Pattern Generation
Methodology for Low Power Consumption", in
16th IEEE VTS, April 1998, pp. 453-457.

[4] M. Dimopoulos, P. Linardis, "Improved
Selection of Test SubSequences in Sequential
Circuits for Reduced Power Consumption",

IMACS/IEEE-CSCC'2003, July 2003, Greece.
[5] M. Dimopoulos, P. Linardis, "Accelerating the

Compaction of Test Sequences in Sequential
Circuits through Problem Size Reduction", IEEE
Trans. on CAD, vol. 22, no. 10, October 2003,
pp. 1443-1449.

[6] V. Manquinho, J. Silva, "Conditions for Non-
Chronological Backtracking in Boolean
Optimization", AAAI Workshop on the
Integeration of AI and OR Techiques, July 2000.

[7] F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza
Reorda, "New Static Compaction Techniques of
Test Sequences for Synchronous Sequential
Circuits", ED&TC, 1997, pp. 37-43.

[8] O. Coudert, "Two-level logic minimization: An
overview", VLSI journal, Oct. 1994, pp. 97-140.

[9] E. Goldberg, L. Carloni, T. Villa, R. Brayton, A.
Sangiovanni-Vincentelli, "Negative Thinking in
Branch-and-Bound: the Case of Unate
Covering", TCAD, vol. 19, no. 3, March 2000.

[10] F. Brglez, D. Bryan and K. Kozminski,
"Combinational profiles of sequential benchmark
circuits", Int. Symp. on Circuits and Systems,
1989, pp. 1929-1934. (ISCAS’89 Benchmarks
from: www.cbl.ncsu.edu/pub/Benchmark_dirs/.).

[11] T. Cormen, C. Leiserson, R. Rivest, C. Stein,
"Introduction to Algorithms", MIT Press.

[12] S. Liao, S. Devadas, "Solving Covering
Problems Using LPR-Based Lower Bounds",
DAC, 1997.

[13] http://www.gnu.org/software/glpk/glpk.html

#vectors #seq #vectors Time(s) #Backtracks Time(s) #Backtracks Time(s) #Backtracks
s510 989 7 239 0,02 26 1,12 55 6 571
s953 1099 32 541 0,14 307 1,69 173 13,8 1145
s967 1223 31 671 0,07 153 1,65 237 15 1150
s991 448 9 367 0,02 10 0,76 21 6 866
s1196 1805 74 1126 0,32 713 2,79 1808 21 1511
s1238 1554 74 1006 0,23 694 6,04 3815 16,8 1471
s1269 450 29 247 0,12 255 2,73 1181 15,6 1484
s1423 2691 28 1281 0,12 35 2,04 62 19 1521
s1488 1824 19 948 0,1 50 4,39 73 46 1502
s1494 1244 19 654 0,12 20 2,5 41 24,2 1481
s3271 2529 50 1180 1,22 1068 35,21 1879 230,8 3455
s3330 2028 43 1069 0,47 398 16,02 1716 - -
s3384 888 22 412 0,31 61 12,61 209 114 3164
s4863 1533 41 747 1,5 968 157,18 4389 337 4686
s5378 919 42 495 0,5 191 15,31 453 138,6 3434
s6669 592 36 303 1,42 865 32,85 540 - >13200
s13207 544 9 189 0,23 23 3,7 23 31,8 2018
s15850 153 3 93 0,12 17 0,3 23 1,8 661
s35932 903 8 310 13,8 23 - - - -
s38417 1617 30 686 6,1 2520 224,28 1515 630 7125
s38584 8065 105 3808 48 5861 - - - -

MINCOV glpsol-4.8ImprBBMinimum

6507 x 64
1994 x 34

2336 x 108
3096 x 58

4482 x 112
3271 x 71

659 x 10

18390 x 271

34302 x 59
6516 x 95

1019 x 72
857 x 20

3188 x 132

1200 x 133
1227 x 133
1306 x 52

1418 x 107
1422 x 65
1412 x 62

circuit
#faultsx#seq

551 x 37
1044 x 75

Original Problem

