
Stateful Web Services Using WSE

MARTIN VITEK, STANISLAV UCHYTIL, IVO HERMAN
Department of Telecommunications

Brno University of Technology
Purkynova Street 118, 602 00 Brno

CZECH REPUBLIC

Abstract: Web services represent a technology providing data exchange in the Internet distributed environment
through remote procedure calls (RPC). Web services are characterized by their easy and straightforward
definition, to which the type of web service communication is related. It is commonly stateless. When a stateful
communication is needed, it must be provided by the hosting web service environment. This article deals with
some of available techniques used to ensure this type of communication, together with the design of solution
for a stateful web service placed on an IIS server using the WSE library.

Key-Words: web service, IIS, stateful, WSE, SOAP.

1 Introduction
A web service is defined as an object that is able to
generate, receive and process messages [1]. In
practice the SOAP [2] (Simple Object Access
Protocol) protocol is used for communication with
the web service. The web service is usually placed
on a web server that commonly communicates via
the http protocol. In this case the SOAP messages
are encapsulated inside the http messages (see fig.
1).

TCP

HTTP

XML

SOAP

Fig. 1 Web service protocol set.

The usage of http protocol also determines the web
service communication method. It is of the request-
response type and it has a stateless character
because the web service and SOAP specifications
themselves do not solve this issue. If there is a
requirement for a stateful communication with the
web service, a suitable solution must be found in
hosting web service environment, usually by a web
or an application server on which the service is
located, such as in [3] and [4].
 As web services belong to one of the rapidly
expanding internet technology, it can be found a few
methods how to ensure holding web service state
data between individual client requests, such as [8]
or [14]. But among the most familiar techniques for
stateful web service a communication using cookies

belongs that is described in the following section.
But first we take a short look at the standard
stateless web service communication.
In section 3 a new approach how to achieve stateful
communication with a web service is presented.
This technique is based on the WSE library and uses
new designed attributes to simplify and automate
the development of stateful web services as in the
case of stateless services.

2 Stateless web service communication
The web service is usually implemented in the form
of a standard class known from object-oriented
programming (OOP). During the stateless
communication with the web service each client
request is processed by a newly created instance of
the web service class (see fig. 2).
 When a new instance is created all its local data
variables are set to their default values. If the
variables contain information from a hard-to-access
data source, its repeated obtaining (initialization)
with every client request means to lengthen the
whole request process time. The time to process
only the request itself is usually significantly lower
than the time needed for the local variables
initialization; the web service communication
becomes inefficient.
 The hard-to-access data source can be, for
example, data from a database or a reference to an
object situated in a different process.
 The above disadvantages can be solved by
stateful communication with a web service that
enables holding inner web service local (stateful)
data between individual client calls. Initialization of

stateful data takes place only during the first client
request for the web service.

Web Service Call #1

Web Service Call #2

Client
Application

Server HTTP
Application

Web Service
Instace #1

Web Service
Instance #2

SOAP
message

Procedure
Call

Object
Creation

Object
Creation

SOAP
message

Procedure
Call

SOAP
message

SOAP
message

Fig. 2 Individual request processing by new web

service instance.

2.1 Stateful communication using cookies
One of the available methods how the stateful
communication with the web service can be realized
is the usage of cookies. Cookies are small data files
that are sent together with the http message (see fig.
3).

Server Client

HTTP
message
Cookie

HTTP
message
Cookie

Fig.3 Communication with the help of cookies.

There are two basic techniques of stateful
communication with cookies:
 1) The state variables are stored directly inside
the cookies. For example, this method can be used
with web service implementation on the IIS
(Internet Information Server) server, where the
cookies are accessible inside the web service
through the Sessions object [5]. This is suitable
especially for smaller data elements because stateful

data increases amount data transmitted between the
client and the server. If it is sensitive information, it
must be protected in an appropriate way [6].
 2) Only the http session identifier is held in the
cookies while the state variables are stored
somewhere on the server. The identifier is for
unique determination whose request belongs to the
given http session. This type of stateful
communication can be found on the IBM
Websphere server [7], for example.
 The advantage of using cookies is that it is well-
known communication method on the Internet. The
cookies also solve the problem of stateful data
lifetime because it can be related to the cookies
lifetime. A disadvantage is that the communication
with cookies is not always permitted on the client
side (because of security reasons, for example).
Then this method of stateful data transmission
cannot be used.

2.2 Web Services Extensions
The basic web service and the SOAP protocol
specification would be certainly not enough for real
practical application of this technology. One of the
web service properties is its extensibility. Web
service protocol extensions are being designed for
more complicated communication techniques, for
example WS-Security solves the question of secure
communication, WS-Reliable Messaging is for
reliable communication, and WS-Transaction is
used for transaction management, etc.
 One of web service extensions is the
WS-Resources specification for managing the
access to stateful data resources through web
services [8]. With the help of this specification,
storing of state in the web service can be realized.
But if there is only a requirement for simple holding
data between individual client requests, the protocol
extensions are unnecessarily robust, i.e. they require
extra knowledge and implementation that a web
services creator must know.

3 Stateful communication through
WSE
The disadvantage of transferring additional cookies
together with the http message can be removed by
inserting the information form cookies directly in
the SOAP message that is encapsulated in the http
message. From two above solutions of stateful
communication using cookies it is more
advantageous to transfer only the session identifier.
This solution requires:

 1) putting extra information in the SOAP
message.

 2) processing this information on the server side
and restoring the respective stateful data.

If the web service is placed on the IIS Server then
these steps can be easily realized through the WSE
library. This library is also used in proposed
solution for stateful communication with the web
service using the WSE library.

3.1 The WSE library
Web Service Enhancement (WSE) is a new library
of classes that enables building web services using
the newest protocols, such as WS-Security, WS-
Routing, DIME, WS-Attachments, etc. WSE is
completely integrated into the ASP.NET and offers
a possibility how to easily extend web service
functionality on the IIS (Internet Information
Server) server [9].
 The WSE principle is based on SOAP message
preprocessing just before the message is processed
in a standard way. The preprocessing is executed in
filters [10] (see fig. 4).

Client Server

Output
filters

Output
filters

Input
filters

Input
filters

SOAP message

SOAP message

Fig. 4 Input and output WSE filters.

If the WSE library is used, then all outgoing
messages on the client side go through a set of
output filters, while on the server side all incoming
messages pass through a set of input filters. In the
server-client direction the message goes
successively through the server output filters and the
client input filters on the client side.
 A great contribution of the WSE library can be
seen in the ability to create own filters [11] by
means of which message preprocessing can be
realized on both (client and server) sides. On the
server side the message is preprocessed in the input
filters just before the web service method is called,
while output filters enable modifying the message
just before it is sent to the network. As a matter of
course there is the possibility of data exchange
between a filter and a web service object through
the SOAP context of the message.
 The lifetime of filter is interesting. Filters are
not created and destroyed during every request for
the web service. They are created only when an http

application is started and can be destroyed when a
web service has not been used for a long time or
there is lack of memory on the web server. So one
filter processes several requests from one or more
clients. The filter keeps its state between individual
calls. This property can be used to realize stateful
communication with a web service.

3.2 Stateful web service using WSE library
Stateful communication based on WSE can run
according to the conception depicted in fig. 2.

Client Server

Web
Service

Default
filters

State filter

Input filters

Default
filters

State filter

Output filters

O
ut

pu
t

fil
te

rs
In

pu
t

fil
te

rs

State
data

Standard
request

Sesssion
Identifier

Standard
response

Session
Identifier

Standard
request

Standard
response

Fig. 5 Stateful communication using the WSE

filters.

This conception is based on SOAP messages being
preprocessed by a customized WSE filter (state
filter) and an additive identifier (state session
identifier) in the SOAP message header.
 Since the WSE filter holds its state even
between incoming requests, it can be used to store
client-specific information (stateful data) that needs
to be kept between individual web service calls.
Each client request contains the unique state session
identifier, so the WSE state filter can find out which
request belongs to which client-web service
connection (session). The filter then contains a list
of value pairs including the state identifier and
stateful data.
 During an incoming request the input state filter
finds out the state identifier from the message
header, and based on this identifier the filter looks
for relevant stateful data in its list. The filter then
sets this data on a newly created web service object
using the SOAP context. In this way it is guaranteed
that at the time of web service method calling, the
client-specific data is set as in the previous request.
The web service object then appears to keep its state
between individual message calls.
 When the web service method call finishes, it is
necessary to ensure the storing of stateful data
before the web service object is destroyed. This
activity is provided by the output state filter, which
updates the respective record in its stateful data list

and stores the state identifier in the outgoing SOAP
message (see fig. 6).
 From the client viewpoint the web service
appears to store its state between individual calls.
For the whole system to operate correctly, it is
necessary to place an input and an output state filter
also on the client side. The client input filter serves
to parse the state identifier from the incoming
message, while the output filter inserts the identifier
in the message conversely.

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap= ... >
 <soap:Header>
 ...
 <stateSession xmlns=...>
 <Id>2004-11-29T21:12:10N0</Id>
 <ExpireTimeout>
 00:02:00
 </ExpireTimeout>
 ...
 </stateSession>
 ...
 </soap:Header>

 <soap:Body>
 <SetValue xmlns=...>
 <theValue>7</theValue>
 </SetValue>
 </soap:Body>

</soap:Envelope>

Fig. 6 Reduced content of the SOAP message
containing the state session header.

The flow of SOAP requests and responses through
the state session filters on the client and server side
is depicted in figure 7.

Web
service
object

In
te

rn
et

 n
et

w
or

k

O
ut

pu
t s

ta
te

se
ss

io
n

cl
ie

nt
fil

te
r

In
pu

t s
ta

te
se

ss
io

n
se

rv
er

fil
te

r

In
pu

t s
ta

te
se

ss
io

n
cl

ie
nt

fil
te

r

O
ut

pu
t s

ta
te

se
ss

io
n

se
rv

er
fil

te
r

S
O

A
P

 m
es

sa
ge

co
nt

ai
ni

ng
 s

es
si

on
he

ad
er

S
O

A
P

 m
es

sa
ge

co
nt

ai
ni

ng
 s

es
si

on
he

ad
er

Standard
SOAP

request

Standard
SOAP

response

Standard
SOAP

response

Standard
SOAP

response

Server sideClient side

Proxy
object

Fig. 7 Block scheme of message flow through the
WSE state session filters on the client and server

side.

3.3 Session attributes
 On the .NET Framework platform, attributes can
be added to data elements during their declaration.
By this method extra information can be assigned to
data element indicating how to operate with the
element [12].
 To simplify and automate stateful web service
development the Store attribute was designed. This
attribute says that the data element defined with it
has to be saved in data storage, so it can be later
restored. The definition of such a data element is
simple, as shown in fig. 8.

[Store()]
private int _counter;

Fig. 8 The definition of data element

together with Store attribute.

Futhermore the ServiceState attribute is defined.
This attribute can be applied on the service web
method (the service public method that is accessible
through a network). Through the ServiceState
attribute we can control the state of session when
the method is called. We can set whether the called
method uses, creates or destroys the session
ensuring stateful communication. The usage of the
ServiceState attribute can be seen
in Figure 9.

3.4 Stateful web service implementation
The implementation of ASP.NET stateful web
service using the WSE library, state filters, Store
and ServiceState attribute, is almost same as the
implementation of standard stateless service. The
first step is to integrate the WSE library together
with a state filter on both the server and client side.
This step can be done through the xml configuration
files or programmatically. This procedure can be
found in the WSE library documentation [11]. What
then follows is the development of the web service
itself, its class respectively.
 The development of stateful web service class is
the same as the stateless service class but data
variables whose content should be held between
individual client calls are defined with the Store
attribute. Furthermore the methods using state
session are defined with the ServiceState attribute.
The definition of such stateful web service class is
depicted in figure 8. It is the simple web service
holding state of counter (the _value variable) among
individual client calls.

 The client code of this web service can be as
given in figure 10.

// Counter service.
public class RemoteCounterService :

StateFulWebService
{

[Store()]
private int _value; // counter value –
 // state variable

// ctor
public Counter () : base ()
{
...

 }

 ...

// Sets the counter value.
 [WebMethod]
 [ServiceState(

 ServiceStateUsage.Apply)]
 public void SetValue (int theValue)
 {
 _value = theValue;
 }

// Gets the counter value.
 [WebMethod]
 [ServiceState(
 ServiceStateUsage.Apply)]
 public int GetValue ()
 {
 return _value;
 }

// Adds the value.
 [WebMethod]
 [ServiceState(
 ServiceStateUsage.Apply)]
 public void AddValue (int theValue)
 {
 _value += theValue;
 }
}

Fig. 9 The code example of stateful web service

written in the C# language.

RemoteCounterService myService =
 new RemoteCounterService ();

// set counter, ie. calling web method
// that is defined as method for applying
// service state
myService.SetValue (7);
// add value, ie. calling web method
// that is defined as method for applying
// service state
myService.AddValue (4);
// get value – returns number 11, ie.
// the web service holds its state
// between client request
int counter = myService.GetValue();

Fig. 10 The example of client code using the stateful

web service defined in figure 8.

4. Conclusion
Stateful communication with the web service is
usually based on application of cookies. The
disadvantage of this solution is the necessary
support of cookies processing on the client side,
which need not always to be fulfilled. The described
solution uses the possibility of extending the SOAP
message by a new header describing the created
session for stateful communication and by the WSE
library for processing this header, storing and
restoring stateful data of the service. The solution is
characterized by its simplicity and the possibility of
setting which data will be stored through the Store
attribute. The only necessary steps are to integrate
the WSE library and to add filters providing stateful
communication. The development and
communication with such service seems to be same
as the communication with a standard stateless web
service.
 The importance of the web service will increase
in future. This is also evidenced by efforts aimed at
creating a unified interface for communication and
access to remote services via a technology called
Indigo in which the support of stateful
communication with the web service should be
already implemented [13].

Acknowledgement
This paper has been prepared with the support of the
Grant Agency of the Czech Republic within grant No.
102/03/1033 and 1645/2004/G1: "Conception of modules
for web service stateful communication".

References
[1] Tidwell D., Snell J., Kulchenko P., Program-

ming Web Services with SOAP, O’Reilly 2001,
ISBN: 0-596-00095-2.

[2] World Wide Web Consortium, SOAP specifi-
cations, available at http://www.w3.org/TR/
soap/.

[3] The MS.NETGrid Project, available at
http://www.epcc.ed.ac.uk/~ogsanet/

[4] Java Developer Center, How-to: create Stateful
Web Service from Basic Java Class, available at
www.oracle.com/technology/tech/java/oc4j/
1003/how_to/how-to-ws-basic-stateful.html

[5] Powell M., Using ASP.NET Session State in a
Web Service, available at http://msdn.
microsoft.com.

[6] Prosise J., Foiling Session Hijacking Attempts,
available at http://msdn.microsoft.com/
msdnmag/issues/04/08/WickedCode/

[7] Hines B., Alcott T., Barcia R., Batzum K., IBM
WebSphere Session Management, available at
http://www.informit.com/articles/article.asp

[8] Czajkowski K., Ferguson F. D., et al, The WS-
Resource Framework, available at
http://schiermike.sc.funpic.de/published/PDFs/
wsrf-arbeit.pdf

[9] Ewald T., Programming with web service
enhancements 2.0, available at http://msdn.
microsoft.com/webservices/building/wse/.

[10] Ewald T., Inside the Web Services
Enhancements Pipeline, available at
http://msdn.microsoft.com/webservices/
building/wse/.

[11] WSE library documentation, Creating Custom
Filters with WSE, available at http://msdn.
micorosft.com.

[12] .NET Framework Developer's Guide, Writing
Custom Attributes, available at http://msdn.
microsoft.com

[13] Januszewski K., Writing Asynchronous,
Bidirectional, Stateful, Reliable Web Services
with Indigo, available at http://msdn.microsoft.
com/Longhorn/understanding/pillars/Indigo/
default.aspx.

[14] Web Services Addressing Working Group,
Web Services Addressing 1.0 - Core, available
at http://w3.org/2002/ws/addr/.

