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Abstract: - Let a set of training and test samples be given, and the samples from the training set be
partitioned into a number of classes, while classification of the test samples is unknown. The classification
problem consists in determining classes of the test samples utilizing the information provided by the
training set. Usually, not all features of the data set are informative for discovering the classification, and
a subset of features relevant to it should be found. This task is called the feature selection. We handle it
from the viewpoint of mathematical programming in the following way. We consider several unsupervised
clustering principles and use them as constraints, while representing the desirable properties of feature
selection as the objective function. In particular, we consider k-means local optimality constraints,
pairwise threshold constraints, and biclustering consistency constraints. The involved objectives are
used either to maximize separation of classes or to minimize the information loss.

The developed optimization-based approach has shown good performance on well-known DNA microar-
ray data sets.

Key-Words:  Data mining, Feature selection, Clustering, Classification, Supervised learning, k-means,
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1 Introduction so that samples from the same class share certain
‘ common properties characterizing the classes.
Let a data set of n samples and m features be given This is one of the central problems of data min-

as a rectangular matrix A = (aij)mxn, where the ing theory and applications, and in practice it is
value a;; is the expression of i-th feature in j-th  frequently complicated by the presence of outliers

sample. We consider classification of the samples (i ¢, samples which do not possess characteristics
into classes of the majority of samples from their class) in the
81,88, Se C{l...n}, k=1...m, training set. Furthermore, usually not all features

of the data are informative for discovering the clas-

S1USU...US ={1...n}, sification, and a subset of features determining it

SiNSy =0, kt=1...r, k#¢. should be found. This task is called the feature

selection.

In this paper, we develop a mathematical pro-
gramming approach to these major data mining
problems. We make use of principles of unsu-
pervised learning (clustering) and involve them in
constraints of an optimization problem for feature

The set of samples is divided into the training and
test sets. For the samples from the training set the
classification is known, while for the samples from
the test set it has to be performed utilizing the
information provided by the training set classifica-
tion. Generally, the classification should be done



selection. The objective function is formed to rep-
resent the goal of either maximization of class sep-
aration or minimization of the information loss.
As feature selection is accomplished, the classifi-
cation of test set samples is performed on the basis
of the same unsupervised clustering principles that
were used for feature selection constraints.

The paper is organized as follows. In the next
section we consider a number of conditions that
may be used to show that classes of samples are
well-separated. They are normally used as stop-
ping criteria of unsupervised clustering. In Sec-
tion 3, on the basis of these criteria, we formulate
our optimization-based algorithms for feature se-
lection and classification. In Section 4 we present
our computational experiment results on two well-
known microarray data sets. Finally, in Section 5
we conclude the paper with general remarks and
directions for further research.

2 Unsupervised Clustering Prin-
ciples

Let us describe the formal setup for performing the
feature selection. Let each sample be already as-
signed somehow to one of the classes Sy, 5o, ..., ;.
Introduce a 0-1 matrix S = (s;x)nxr such that
sjr = 1if j € S, and s;; = 0 otherwise. The sam-
ple class centroids can be computed as the matrix
C= (Cik)mX"":

C =AS(STs) 1, (1)

whose k-th column represents the centroid of the
class Si. Each value ¢;; in the matrix C gives us
the average expression of the i-th feature in the
sample class Sy.

We also introduce a vector of variables z =
(2)i=1...m bounded between 0 and 1 representing
chosen feature weights. If x; = 0, then the i-th
feature is disregarded during the test set classifi-
cation.

The three types of constraints discussed next
were used in the present research. We should point
out that any of them is not universal and is appli-
cable only to data of particular properties. How-
ever, there is no limitation as to what unsuper-
vised clustering principles to use in the developed

mathematical programming framework, and other
suitable constraints may be involved if it is re-
quired by properties of the data (e.g., noisiness
or incompleteness).

2.1 k-means local optimality

The given partition of the samples into the classes
is (locally) optimal with respect to k-means if

)

whenever j € S;, b,k =1...r, k # k. Indeed, the
n - (r — 1) inequalities (2) imply that each sample
is at least as close to the centroid of its class as to
the centroid of any other class.

m 9 m
(aij —e) 2 <Y (aij — ciw)’ i (2)
=1 =1

2.2 Pairwise threshold constraints

We can tighten the k-means local optimality con-
straints imposing the requirement that the dis-
tance between any two samples that belong to the
same class is always not greater than any distance
between two samples from different classes. This

can be achieved by % inequalities of the form
¢ 2
> (@i — aij,)” @i < Dy (3)
i=1

if samples 7; and jo are from the same class, or
m
> (aijy = aijy)* 25 > Deat (4)
i=1

if samples j; and jo are from different classes, with

one additional inequality

Dint S Demt- (5)

We will call the inequalities (3)-(5) the pairwise
threshold constraints. It is easy to see that the
pairwise threshold constraints imply the k-means
local optimality, but not vice versa.

2.3 Consistent biclustering

The last principle we use for feature selection con-
straints is based on simultaneous clustering of sam-
ples and features of the data set. Suppose there
exists a partition of features into r classes

Fi,Fo, s Fry Fr C{l..om}, k=1...r,



FiUFU...UF ={1...m},
FiNFr=@, kflb=1...r, k#{L

such that features of class Fj, are highly expressed
in the samples of class S;. We will call the set of
class pairs

B = ((517-7:1)7 (527‘}-2)’ SRR (87""7:7")) (6)

a biclustering of the data set. Similarly to the
matrices S and C, we introduce the 0-1 matrix
F = (fit)mxr such that f; = 1 if i € Fy and
fik = 0 otherwise, and the matrix of feature class
centroids D = (di)nxr:

D=ATF(FTF)™!, (7)

whose k-th column represents the centroid of the
class Fj. Now the value dj; gives us the average
feature expression in the sample j among features
of the class Fj. The condition of up-regulation of
the features of a class Fj in the samples of the
class Sy implies

i€F, = Vh=1...r, k#k: c;>ci, (8)
and, symmetrically,
jES, = Vhk=1...r, k#k: di > djg. (9)

If the biclustering B satisfies both (8) and (9), we
will call it consistent.

For the purpose of feature selection, when the
classes of samples 51, 8o, ..., S, are already given,
we construct the classes of features Fy, Fo, ..., F;
according to (8). Then, to obtain a consistent
biclustering, we remove some features from the
data set in order to satisfy (9). Considering now
the variables z; to be 0-1 (i.e., fractional feature
weights are impossible), we arrive at the following
feature selection constraints:

doimy @ijfipTi Yoty ij fik®
ity [y Sy fiwi

forallj € S;, kk=1...r, k #F.

These are fractional 0—1 constraints, and in or-
der to be tackled by industrial optimization solvers,
they need to be linearized. The linearization is
based on a very simple idea:

(10)

Theorem 1 (Wu [1]) A polynomial mized 0-1

term z = xy, where x is a 0—1 variable, and y is a
continuous variable taking any positive value, can
be represented by the following linear inequalities:
(1) y—z<M—Mz; (2) z<y; (3) 2 < Mz; (4)
z > 0, where M is a large number greater than y.

A simple proof of this result can be found in

[1].

So, let us introduce variables

1
Ye = =m 7
Sy fikti

Since f; can take values only zero or one, equation
(11) can be equivalently rewritten as

k=1...r. (11)

m

S fiwi =1 k=1...r. (12)
i=1

m
Zfikxiyk = 1, k=1...r (13)
i=1

In terms of the new variables y;, condition (10) is
replaced by

m m
> aijfaivy > Y aij finmiyn (14)

for all j € §;, k,k=1...r, k# k. Next, observe
that the term z;yy is present in (14) if and only if
fik = 1, 1.e., 1 € Fi. So, there are totally only m of
such products in (14), and hence we can introduce
m variables z; = z;yx, 1 € Fi to linearize the
system by Theorem 1. Obviously, the parameter
M can be set to 1. So, instead of (13) and (14),
we have the following constraints:

m

S fazmi=1k=1...r. (15)
=1

m m

> aifiizi =Y aifinzi (16)
i—1 im1

forall j € S, k,k=1...r, k #k;
yr — 2 < 1=z, 2z <yp, 2z < xy, 2; 20, (17)

when ¢ € Fp,.



3 Formulations and Algorithms
for Feature Selection

As we mentioned in the introduction, we formu-
late the feature selection problem as an optimiza-
tion task and use the objective function either to
maximize the class separation or to minimize the
information loss. In the latter case the goal is to
select as many features as possible with minimum
decrease of their weights, so the objective function
may be expressed as

maxei (18)
i=1

independently of what type of constraints do we
use. Class separation measures are more criterion-
specific, so we cannot formulate a unique objective
function in this case.

Below, we formally state three optimization
formulations used to perform the feature selection,
and specify applied solving methods and criteria
for classification of test set samples.

3.1 k-means local optimality

The objective (18) was used with constraints (2)
applied to the training set. The variables z; are
continuous and boundedas 0 < x; < 1,2 =1...m.
This is a Linear Programming formulation, and
it can be addressed by a standard software like
CPLEX [2].

To perform the test set classification, we choose
for each test sample b = (b;)i=1...m the class S;
such that

(bi —c;p)’wi <> (b —cin)’zi (19)
=1 =1

forallk=1...r.

3.2 Pairwise threshold constraints

In this case we applied the class separation objec-
tive of the form

max Demt — D'i'nt (20)

subject to the constraints (3), (4). Again, the vari-
ables z; are continuous and bounded as 0 < z; <

1,4 =1...m, and this is a Linear Programming
formulation that can be addressed by a standard
software like CPLEX [2]. However, because the
pairwise threshold constraints are very strong and
require a very distinct separation of classes, there
is a good chance that the only feasible solution is
trivial: = = 0. This may be caused by outliers
in the training set or just scattered distribution
within the classes. Hence, we have to make cer-
tain relaxation of the constraint if a non-trivial
solution is not possible.

Fortunately, it can be performed analyzing dual
variables corresponding to the trivial solution. In-
deed, if the dual variable corresponding to a con-
straint is nonzero, we know that this constraint
is active and keeps the optimal solution from im-
provement. So, as long as £ = 0 is the only feasi-
ble solution to the problem, we iteratively remove
constraints with corresponding nonzero dual vari-
ables unless we obtain the opportunity to improve
the solution. If this procedure leads to removal of
all constraints, we conclude that the given feature
selection problem is not suitable for the pairwise
threshold constraints.

To perform the test set classification, we apply
the nearest neighborhood criterion. That is, for a
test sample b = (b;)i=1..m, we find the sample 7
such that

(b—aij)2mi < Z;(b_aij)%i (21)
=

=1

for all j =1...n, and assign b to the class S; > 7.

3.3 Consistent biclustering

We have chosen the objective (18) for feature se-
lection via consistent biclustrering. As we men-
tioned above, the variables z; are considered to
be 0-1 in this case. With the constraints (15)-
(17) it forms a linear mixed 0-1 program. Unfor-
tunately, while the linearization by Theorem 1
works nicely for small-size problems, it often cre-
ates instances, where the gap between the inte-
ger programming and the linear programming re-
laxation optimum solutions is very big for larger
problems. As a consequence, the instance can not
be solved in a reasonable time even with the best



techniques implemented in modern integer pro-
gramming solvers. Hence, we have developed an
alternative approach.

Consider the meaning of variables z;. We have
introduced them so that

2 1 € Fy. (22)

e fewwe
Thus, for ¢ € Fy, z; is the reciprocal of the cardi-
nality of the class Fj after the feature selection, if
the ¢-th feature is selected, and 0 otherwise. This
suggests that z; is also a binary variable by nature
as x; is, but its nonzero value is just not set to
1. It is not known unless the optimal sizes of fea-
ture classes are obtained. However, knowing z; is
sufficient to define the value of z;, and the system
of constraints with respect only to the continuous
variables 0 < z; < 1 constitutes a linear relaxation
of the biclustering constraints (10). Furthermore
it can be strengthened by the system of inequali-
ties connecting z; to z;. Indeed, if we know that
no more than my, features can be selected for class
F, then it is valid to impose:

z; < MpZi, Tj > Zi, 1 € -7:k- (23)

Hence, we used the following iterative heuris-
tic algorithm for feature selection via consistent
biclustering;:

Algorithm 1
1. Assign my == |Fi|, k=1...7.

2. Solve the mized 0-1 programming formu-
lation using the inequalities (23) instead of

(17).
3. If mp = > fukxi for allk =1...7, go
to 6.
4. Assignmy = Y ity figzi forallk=1...7.
5. Go to 2.
6. STOP.

Another modification that was used to improve
the quality of the feature selection is strengthening
of the class separation by introduction of a coeffi-
cient greater than 1 for the right-hand side of the
inequality (10). In this case, we improve (16) by
the relation

m m
Z az‘jfifczi >(1+1) Z a;j fik%i (24)
=1 i=1

for all j € S, kk =1...r k # k, and t >
0 is a constant that becomes a parameter of the
method. We used ¢t = 0.1 for our computational
experiments.

After the feature selection is done, we per-
form classification of test samples according to (9).
That is, if b = (b;)j=1...m is a test sample, we assign
it to the class S; satisfying

>iey bifpxi S >iny bifirxi
iy e T 2y faws

(25)
forallk=1...r, k+#k.

4 Computational Experiments

4.1 ALL vs. AML data set

We applied our methodology to a well-researched
microarray data set containing samples from pa-
tients diagnosed with acute lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML) dis-
eases [3]. It has been the subject of a variety of
research papers, e.g. [4, 5, 6, 7]. This data set
was also used in the CAMDA 2001 data contest.
It is divided into two parts — the training set (27
ALL, 11 AML samples), and the test set (20 ALL,
14 AML samples), and involves 7070 human genes
(features).

The feature selection program with k-means
local optimality constraints (18),(2) delivered the
optimum value 7069.3582 (which means that al-
most all features were selected with weights close
to 1). The subsequent classification of the test
set by (19) gave two misclassifications: the AML-
sample 64 and AML-sample 66 were classified into
the ALL class.

The pairwise threshold program (18),(3),(4) se-
lected 1457 features with nonzero weights. The
subsequent classification of the test set was per-
fect: all ALL and AML test samples were classified
into appropriate classes.

The biclustering feature selection Algorithm
1 selected 3439 features for class ALL and 3242
features for class AML. The subsequent classifica-
tion by (25) contained only one error: the AML-
sample 66 was classified into the ALL class.

To provide justification of the quality of this
result, we should mention that the support vector



machines (SVM) approach delivers up to 5 clas-
sification errors on the ALL vs. AML data set
depending on how the parameters of the method
are tuned [6]. Furthermore, the perfect classifi-
cation was obtained only with one specific set of
values of the parameters.

4.2 Colon cancer data set

A colon cancer microarray data set including ex-
pression profiles of 2000 genes from 22 normal tis-
sues and 40 tumor samples was published in [8].
We randomly selected 11 normal and 20 tumor
samples into the training set. The other half of
samples were used as the test set.

The feature selection program with k-means
local optimality constraints (18),(2) delivered the
optimum value 1903.045. The number of features
selected with nonzero weights was 1901. The clas-
sification errors were as follows: 4 Normal samples
(8, 12, 34, 36) are classified into Tumor class, and
2 Tumor samples (30, 36) are classified into Nor-
mal class.

The pairwise threshold constraints allowed for
a feasible solution only after two iterations of ex-
clusion of active constraints, and after that only 32
features were selected with nonzero weights. The
misclassified samples are 5 Normal (2, 8, 12, 34,
36), and 2 Tumor (30, 36).

5 Conclusions

We have developed an optimization framework for
handling major data mining problems, which pro-
vides a unified methodology for feature selection
and classification with the possibility of outlier de-
tection. It has a very natural connection to the
conceptions of unsupervised clustering. Since the
used unsupervised clustering criteria are not fixed,
the methodology is highly flexible and potentially
may be used to process data of arbitrary nature.
The fact that the practically important data min-
ing problems can be represented as optimization
problems allows us to use standard optimization
software packages to solve them. This direction
gives us a promise for more efficient treatment of
real-world problems, whose original formulation is
normally quite fuzzy.

The good performance on known microarray
data sets confirms reliability of the applied method-

ology.
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