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Abstract:  – A totally passive multistatic radar or Transmitter-Independent Receiver Network (TIRN) [1], can 
be defined as a number of independent bistatic receivers [2], connected to a communication network, in order 
to detect and track targets in their coverage area using the signal(s) of non-cooperative transmitter(s). In this 
paper, an Angle of Arrival (AOA) method of transmitter and target detection is investigated. Linear systems of 
equations are extracted, and then solved by recurrent Artificial Neural Networks (ANN) for detection and 
tracking of moving and ballistic targets. These linear systems are often over determined by using a redundant 
number of receivers in order to achieve a minimal false alarm probability and increase the survivability of the 
TIRN. Finally it is shown that practical ANN designs are attractive and simple solutions for an AOA based 
TIRN for moving target tracking purposes, combining fast and robust convergence, ease of design and 
construction and – in case of adequate redundancy – adequate survivability 
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Abbreviations: 
ANN:   Artificial Neural Network. 
AOA:  Angle of Arrival. 
CW:  Continuous Wave.  
ESM:  Electronic Support Measures. 
EW:  Early Warning. 
IBR:  Independent Bistatic Receiver. 
PRF:  Pulse Repetition Frequency. 
PRI:  Pulse Repetition Interval. 
RMSE:  Root Mean Square Error. 
RS:  Range Sum. 
TIRN:  Transmitter – Independent Receiver 
Network. 
TDOA:  Time Difference Of Arrival.  
UCAV:  Unmanned Combat Aerial Vehicle 
 
1. Introduction. 
A Transmitter – Independent Receiver Network is a 
number of Independent Bistatic Receivers (IBR) [2] 

connected to a communications network for target 
data information interchange in order to detect and 
track moving targets illuminated by non-cooperative 
transmitters [1].  The constraint of non-cooperative 
operation is essential for operational and 
survivability reasons. Enemy transmitters may be 
used as well as friendly ones. 

Initially, the location of the non-cooperative 
transmitter must be identified and the signal it 
transmits must be analysed and have its parameters 
defined. Then the scattered signal on a possible 
target must be received and processed to uncover 
the target location and velocity. False targets or 
target ghosts must be identified and rejected. To 
accomplish that, several target location methods 
must be used. These are the Triangulation (or “angle 
of arrival” AOA), Time Difference of Arrival 
(TDOA) or other methods like the Range Sum 
method known for cooperative bistatic radars [3]. 



Triangulation, or Angle of arrival – AOA method is 
a simple technique of target location. This consists 
of the definition of at least three intersecting planar 
surfaces. Each surface contains one receiver and the 
target point, which is the common intersection point 
with the others. This method, although simple, 
needs receivers with monopulse antennas [4] and it 
is vulnerable to ghosting. This occurs when a 
receiver locks on a target and another receiver locks 
on another nearby target. Then under some 
circumstances a false target will appear in the 
intersection point of the planar surfaces created by 
the receivers and their corresponding targets. In 
order to minimize the possibility of this 
phenomenon the number of receivers must be 
increased or a second detection method like TDOA 
or Range Sum (RS) must be used.  

On the other hand AOA is signal independent, 
and almost any signal may be used for target 
detection, provided that the receiver and the antenna 
used cover the band in which the signal is 
transmitted. Then, in case the received signal 
properties allow Doppler shift measurements (e.g. a 
CW signal) an ANN architecture similar to that used 
for position determination, can be used for velocity 
vector determination.  
 
 
2. Formulation of the AOA Problem.  
As referred in the introduction, a monopulse 
receiver can produce can produce two perpendicular 
surfaces each one containing the target and the 
receiver points. Two monopulse receivers at 
different locations can produce can produce in most 
cases four surfaces intersecting on the target. 
Special cases are: 

• The target is located at equal or opposite 
azimuths or equal elevations from the 
receivers: Three surfaces are given. 

• The target is on the straight line connecting 
the receivers: Only two surfaces are given. 

From these special cases only the second can 
actually create a detection problem that will occur 
for a very short time for a moving target. If three or 
more receivers are used this problem is eliminated. 
In this paper a four-receiver model is used on a 
random constellation so none of the mentioned 
cases can occur. A for receiver model is required for 
velocity vector discrimination as it will be shown 
later. 

Let iiii zyxr ,,( ) and ),,( zyxrT be the 
locations of one of the receivers ( }4,3,2,1{∈i ) and 
the target respectively. Then the equations 
connecting the Cartesian coordinates with the 

spherical coordinates measured on each receiver by 
its monopulse antenna are given below: 
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Note that iR is the range from the receiver to the 
target, and it can be eliminated. After some 
algebraic calculations system (1) is equivalent to: 
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This is an equation of a straight line connecting the 
receiver and the target, and it is actually the 
equation of the bore sight of the monopulse antenna 
expressed in Cartesian coordinates. 

Similar expressions can be extracted for all 
the four receivers and after the combination of them, 
the system becomes: 

bAx =      (3) 
With: 
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This is an overdetermined 38×  system. It is known 
though that at least a solution exists in this case, at 
the target location point. Bearing in mind that an 
exact algebraic solution may not be possible due to 
angular measurement random errors a minimum 
RMSE solution will be given by a gradient descent 
method. 
 
 

3. AOA problem solution using an on 
– line method. 
An on – line method of linear equation solving has 
been described thoroughly in [5] with a method that 
can be easily adapted for the triangulation method. 
In order to solve (3), an energy function for an 
estimated ex must be defined which in this case is: 

)()(5.0)( bAxbAx ee −−= TxE   (5) 
The differential equation system below 

(where t  is in time units) describes gradient descent 
approximation for the minimization of the energy 
function )(xE  for an initial value )0(ex  (initial 
value problem). 
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The above system in its analytical form is equivalent 
to:  
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Choice of jpµ  must ensure the stability of the 
differential equation and an appropriate 
convergence speed to the desired solution. It has 
been proven that the system (6) or (7) is stable and 
has a solution that converges to a vector x  as 
t tends to the infinite as it is: 
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The above is always true if M  with elements jpµ  is 
a (predefined) positive definite matrix. Further 
analysis of (7) gives: 
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The recurrent ANN, shown in fig.A.1, (Appendix 
A) consists of integrators (as many as the dimension 
of the problem) and weighted input adders. The 



weights ijα  and ijµ  are the elements of the matrices 
A  and M , Second array elements they are 
constant. That makes this network easy to construct. 
In this particular case, in equations (6) to (9), 

8=m and 3=n . They are small values that make 
the construction even easier. 

There are three layers in that ANN connected 
in feed – forward mode. First layer named "sensor 
layer" because it senses the actual variables ix  and 
computes errors )(xei  as they defined in (9a). Error 
signals )(xei  are inputs to the second “ association 
” layer, which gives the gradient components of the 
system. Here the weights are approximately equal to 
weights of the first layer as (6) denotes. The third, 
"response layer" is consisted of response elements, 
which define the convergence rate.  
In this case ijµ  (third layer elements) are considered 
constant for simplicity reasons. In order to simplify 
the network, ijµ  may be considered elements of a 
positively defined diagonal matrix, thus making the 
elimination of the adders in the third layer possible. 
This is the case simulated here in order to prove that 
even a simplified design can give the expected 
results. 
 
 
4. ANN Simulation results and error 
analysis. 
Test system was simulated using Matlab’s 
SIMULINK ®. This consists of four receivers at: 
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This set of receivers is placed on a rough land 
surface as receiver altitudes denote. Coordinate axes 

xx' and yy'  denote position from West (negative) 
to East and from South to North respectively while 
axis zz'  denotes altitude (height) placement.  

The target trajectories simulated here are chosen 
between extremely manoeuvrable airborne targets 
and tactical ballistic missiles.  

• Target 1: A tri-sonic aircraft approaching 
from a 300 Km West 200 Km South with a 
horizontal velocity of 1 Km/sec (0.6 Km/sec 
towards East and 0.4 Km/sec towards 

North) while performing vertical 
manoeuvres between 6 and 10 km altitudes 
with angular frequency of 0.05 rad/sec.  

• Target 2: A bi-sonic aircraft approaching 
from the West at 600 m/sec performing an 
elliptic spiral roll with major axis of 6 Km 
and minor axis of 2 Km at 6 Km altitude 
with a radial velocity of 0.05π  rad/sec This 
target is manoeuvring, developing a 
maximum acceleration estimated at 148.33 
m/sec2 (about 15 g). This will be the case of 
some UCAV being under development 
today. 

• Ballistic Target: A tactical ballistic missile 
launched from 50 Km East 300 Km South at 
a take – off angle of 400 mils and a velocity 
of 3.2 Km/sec towards the North.  

Simulation results are shown to figures A.1 to A.6 at 
the Appendix A. All targets are shown in Range 
Azimuth and Elevation vs. time. Next the difference 
of the real Range Azimuth and Elevation and the 
indicated by the TIRN is shown. Simulation times 
are 1000 seconds for manoeuvring, and the entire 
time of flight (~250 seconds) for the ballistic target. 
Initial guess is zeroed for every target. Although the 
initial guess is totally wrong the network converges 
fast to the actual target location and tracking 
continues at all ranges.  As shown in fig.A.1 to A.6 
only marginal errors are generated; for example 
azimuth and elevation errors do not exceed 0.1 
degree and range errors are confined to 10 meters 
for airborne and 30 meters for ballistic targets. After 
a closer look range error is proportional to the 
derivative of the range under measure (radial 
velocity) and that is the case of the first order 
systems. This gives a way of elimination of that 
error if applications of the TIRN are more 
demanding. The range error is given by: 

•

−= RkD RR      (11) 
For this test model after a brief analysis ( R  in Km 

•

R  in km/sec) 
sec0083.0≅Rk    (12) 

This is close to the sample time of the simulation (or 
the PRI of the transmitter if it is a Low PRF radar). 
Similar expressions can be made for the other 
coordinates (spherical or Cartesian), depending only 
on the sample time, the geometry and the 
convergence rate. (In this model convergence rate is 
high enough to avoid errors). 
 
 
 



5. Velocity Vector Synthesis. 
In a bistatic system the Doppler frequency shift is 
given by the equation: 

c
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In this equation 
•

Tr and 
•

ir is the radial velocity of 
the target at the target-transmitter and target-
receiver directions, while cff DiT ,,  is the 
transmitted signal (carrier) frequency, the Doppler 
shift frequency and the light velocity in the 
atmosphere. This is equivalent to: 
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If the TIRN is synchronized with a stable local 
oscillator, an error in Doppler shift measurement 
can be tolerated since it will be the same error def at 
all the receiver measurements: 

T

de

T

Di
iTiTe f

f
c

f
f

crrvvv −−=+=++
••

 (15) 

In this case a systematic error in velocity is: 
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The measured Doppler shift on any receiver is then 

dmif  and the following equations apply: 
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The above analysis shows that it is possible to 
measure the velocity projection on a target-receiver 
direction approximated by an unknown constant tev , 
identical for all the receivers of a TIRN. Since the 
velocity vector can be analyzed in three dimensions 
then there are four unknown quantities that must be 
identified. That is why a TIRN must be created by at 
least four receivers in order to exploit its full 
capabilities. 

For formulating and solving the velocity 
vector synthesis problem it is better to analyze the 
velocity using a target-centered Cartesian coordinate 
system [1], [6], since the velocity is a vector bound 
on target. If iv  is the vector velocity projection on a 
target-receiver direction and ),,( swuv  the actual 
velocity of the target: 

•

===⋅ 222
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Combining (18c) and (19) and after some algebraic 
calculations [6], [7] a linear system is generated: 
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In this equation the angular coordinates are 
translated from the target-centered coordinate 
system to the correspondents receiver-centered 
parallel to that, since the corresponding coordinates 
are π  radians supplementary. 
Expressing this in matrix-vector form we get: 

δvG =⋅ ~     (21) 
The above is a linear fully determined system the 
solution method is similar to the detection problem.  
Considering tev  in (20) or (21) as a total systematic 
error and applying a similar ANN solution the ANN 
used has a similar architecture the only differences 
being that matrix G is a 44 × matrix, and the 
solution vector v~ differs to the actual velocity 
vector v  by its fourth term only, which is the 
systematic error mentioned. 
 
 
6. Simulation of Velocity Synthesis 
method on a TIRN. 
The target simulated is similar to the first target in 
the AOA problem; a tri-sonic aircraft yawing with 
10g at an altitude of 6 to 10 Km with a maximum 
vertical speed of 300 m/sec.  
The system description and simulation result 
alongside with systematic error is seen in Appendix 
B (figures B.1 to B.5). Figure B.1 describes the test 
model. The only difference in this model to the 
AOA one is the “accelerator” ramp function which 
changes the convergence rate once the target is due 
to be tracked. In figure B.3 a comparison of the 
measured velocity vector components ),,( swu  with 
the real ones is shown – fourth graph being the total 
systematic error taken as 500 m/sec – and figure B.4 
shows the difference of the measured to the actual 
value of each component. Finally figure B.5 shows 
the target location in Cartesian coordinates. 
The ANN is capable of tracking the velocity of this 
target with an accuracy depending only on the 
distance of the target and the convergence rate. In 
fact (comparing Fig B.3 to B.4) errors never exceed 
1 m/sec near the TIRN area, and error in s (z-



component) is only dependent on the convergence 
speed. 
The dependence on the target distance is also easily 
explained: At long distance the Doppler shift is 
nearly the same for all the receivers. 
 
 
7. Conclusions. 
Accuracy of measurements can actually be 
optimised depending only on the geometry and the 
antennas used if only location is needed. This is a 
signal independent method as regards target location 
accuracy. Only angular data is processed. 

On the other hand velocity vector synthesis 
depend on the signal received in the way that 
Doppler measurements must be taken (range 
derivatives). This is easier for example if CW 
illuminates the target. The conclusion here is that 
the radar ambiguity function as described for 
monostatic radars [8] does not apply since CW here 
is the case that gives the best detection and velocity 
determination of a target. 

In the above paragraphs it is shown that a 
TIRN with monopulse antennas is capable of target 
tracking if a relatively simple ANN processes 
measurements taken. The fact that accurate 
solutions can be given to the detection and velocity 
tracing of demanding targets makes it an attractive 
alternative to the active tracking radars especially in 
a battlefield saturated by electromagnetic emissions. 
It is also an attractive solution for civil use where 
accurate tracking of aerial targets is needed (e.g. 
near airfield control) with a cost only a fraction of 
that of conventional radar and more, environment 
friendly since a single radar transmitter may be used 
with more than one TIRN in a wide area. 
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Appendix A. 
Simulation results as described in section 4. 

 
Fig A1: Simulation results for real and tracked 
position of a Target.1 (Ragne AimuthElevation) 
 

 
FigA.2: Absolute difference values for Range, 
Azimuth and Elevation (Target 1). 

 
Fig A.3: Simulation results for real and tracked 
position of a Target.2 (Range, Azimuth, Elevation) 
 

 
Fig.A4: Absolute difference values for Range, 
Azimuth and Elevation (Target 2). 



 
Fig A.5 Simulation results for real and tracked 
position of a Ballistic Target (Range, Azimuth, 
Elevation) 
 

 
Fig.A6: Absolute difference values for Range, 
Azimuth and Elevation (Ballistic Target). 

 
Appendix B 
Simulation results for target velocity as described in 
section 5. 

 
Fig.B1 Systems Architecture 
 

 
Fig B2 Sensor and Association Layer of ANN above. 
  

 
Fig. B2 Velocity (Cartesian coordinates)  
And Systematic Velocity (Doppler) Error  
of Target. 
 



 
Fig. B3 Difference between real and tracked 
velocity. 

 
Fig B.5 Target Location (Cartesian) 
 

 
 


