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Abstract: - Using clustering techniques for data classification is very common. In this paper a Self-Organizing 
Map model is used to carry out an estimation of the process state in a wastewater biological treatment using 
clustering algorithms and validation indexes. The estimation is used to improve the efficiency of the treatment 
plant. 
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1   Introduction 
This work is part of the KNOWATER II project 
“Implementation of a Knowledge Based System for 
Control of Steelworks Waste Water Treatment Plant”, 
which is sponsored by ECSC and their agreement 
number is 7210-PR-234. The contractors are Centro 
Sviluppo Materiali S.p.A., Corus RT&D, Betrieb 
Forschung Institut (BFI) and Universidad de Oviedo. 
The main objective of the KNOWATER II project 
was the development of plant supervision techniques 
for implementation in wastewater treatment plants. 
The present work was focused on the estimation of 
the process state in a wastewater biological treatment 
by means of the development of a neural network 
model that was obtained using Self-Organizing Map 
(SOM) and clustering algorithms. Once the model 
has been validated, a software tool was developed to 
supervise a biological wastewater treatment at a coke 
wastewater treatment plant (CWTP) of Arcelor in 
Avilés (Spain). The estimation of the current process 
state is calculated. Thus, important on-line 
knowledge is obtained. 
 
 
2   Coke Wastewater Treatment Plant 
The coke wastewater treatment plant (CWTP) 
consists of three zones: ammonia stripping towers, 
homogenization tank and biological reactor. The 
instrumentation of the CWTP was selected to control 
some key process variables (pHs and dissolved 
oxygen concentration) and to achieve the process 
monitoring by means of the designed software tool 
and its built-in AI technique. 
Firstly, the influent stream is treated applying vapor 
in order to remove the ammonia in the stripping 
towers. A pHmeter is installed and a PID, which 

controls a caustic soda dosing pump, controls the pH. 
The set-point is fixed at 12. 
The second stage of the performance plant is the 
homogenization tank. At this point, a second pHmeter 
is established for the purpose of controlling pH by 
means of a PID controller with a set-point equal to 7. 
Sulphuric acid is added in order to neutralize the pH. 
Finally, the wastewater is treated biologically in a 
Sequencing Batch Reactor (SBR). The dissolved 
oxygen concentration is controlled by a third PID. Air 
is pumped into the reactor and a valve is regulated. 
The set-point is 3-5 mgO2/l. 
An initial off-line study of the process was done and 
the PID controller output of the oxygen closed loop 
was connected and registered as one of the process 
variables to train the SOM network [1]. 
 
 
3   SOM 
Self-Organizing Map (SOM) is a useful tool for 
process supervision and was used to construct a 
model that can be used as a pattern. The SOM [2] 
consists of a regular lattice typically defined in a two 
dimensional space composed of several neurons 
placed in the nodes of the lattice. SOM training 
implies assigning a set of coordinates in the input 
data space (prototype vector) to each neuron. Thus, 
each neuron is represented by a prototype vector and 
a correspondence is established between the 
coordinates of each neuron in the input space (data 
set) and their coordinates in the 2D-lattice or output 
space. 
The present application was carried out compiling the 
SOM toolbox version 2.0 [3] developed at the HUT 
(Helsinki University of Technology). The steps taken 
to analyze the data are outlined in a previous work 
[4]. Firstly, the most significant process variables are 



selected. These variables are described in table 1. 
Secondly, the data were normalized to a zero mean 
value and a unitary variance to make SOM treat them 
in the same way. After normalizing the SOM network 
was trained with these variables using batch training 
algorithm. Once the SOM has converged, it stores the 
most relevant information about the process in its 
prototype vectors. The visualization process allows 
all this information to be displayed in several ways: 
Interneuron distance matrix (Umatrix) that shows in 
gray or color levels the mean distance of each unit to 
its closest neighbors; the component planes that 
display the value of a given input variable throughout 
the whole data set using gray or color levels in the 2D 
lattice; the best clustering structure that allows the 
main process zones to be visualized [5]. 
 
Table 1. Training Variables 

Name Description 

OXYGEN Dissolved oxygen 
concentration (mgO2/litre) 

CONTROLLER OUTPUT 
Output of the PID controller of 
the   oxygen closed loop (0-
100) 

TEMPERATURE_SBR Temperature in the SBR (C) 
 
 
4   SOM validation 
According to the properties of the SOM, the trained 
neural network must achieve the topology 
preservation of the data. Therefore the neighborhood 
on the output space and in the input space must be 
similar. If two prototype vectors close to each other 
in the input space are mapped wide apart on the grid, 
this is signaled by the situation where two closest best 
matching neurons of an input vector are not adjacent 
neurons. This kind of fold is considered as an 
indication of the topographic error in the mapping 
and does not verify the SOM property about training 
data topology preservation where neighbor neurons 
of the output space correspond to similar values of 
the process variables, i. e., regions of the output space 
represent working zones of the process 
The topographic error [6] can be calculated by 
equation (1) as the proportion of sample vectors for 
which two best matching neurons are not adjacent. N 
is the number of samples, xk is the kth sample of the 
data set and u(xk) is equal to 1 if the first and second 
best matching neurons of xk are not adjacent neurons, 
otherwise zero. 
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The results of this error measurement are very easy to 
interpret and are also directly comparable between 
different models and even mapping of different data 
sets. Moreover, the prototype vectors approximate to 
the data set trying to substitute a data vector for a 
prototype vector of the SOM. A consequence of this 
approach is the quantization error. Equation (2) is 
usually used to calculate the average quantization 
error over the whole data set. N is the number of 
samples, xi is the ith data sample and mb is the 
prototype vector of the best matching neuron for xi. 
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The SOM toolbox uses equations (3) and (4) to 
determine the output space size. The number of 
neurons of the output space is determined by equation 
(3). M is the number of neurons and N is the number 
of samples of the training data. 
 

    N5M ⋅=    (3) 
 
On the other hand, the criterion of the utilized 
toolbox to determine the ratio between the number of 
rows n1 and the number of columns n2 of the 2D grid 
or output space is calculated according to equation 
(4). The ratio between sidelengths of the map is the 
square root of the ratio between the two biggest 
eigenvalues of the training data. The highest 
eigenvalue is e1 and the second highest is e2. 
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Five data sets, which correspond to the aerobic phase 
of the SBR, are available to carry out the validation 
of the model. Pattern 1 before filtering is depicted in 
Fig. 1, whereas pattern 1 after filtering is showed in 
Fig. 2. Each sample is the mean value during 8 
minutes and 20 seconds for each process variable. 
The training variables are showed in table 1. The 
objective is to find out the model that minimizes the 
quantization and topographic errors from several 
neural networks which have been trained using each 
of these available patterns and, at the same time, for 
different map sizes. Thus, a specific data set and an 
optimum map size must be selected. The validation 
method can be summarized in the following steps [7]: 
 
1) A data set or pattern pi is chosen to train the 
network. The data are normalized to a distribution 
with zero mean value and unitary variance. 
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Fig. 1. Pattern 1 before filtering 
 
 
2) Batch training is carried out on the SOM map 
whose sidelengths are calculated by means of 
equations (3) and (4) using pattern pi as training data. 
3) Once the trained model is obtained, the 
topographic and quantization errors are calculated for 

the remaining patterns pj which have not been used 
during the training. These patterns must also be 
previously normalized. 
4) The size of this trained map is increased and 
reduced respecting the proportionality of its 
sidelengths (width and length). Once the size has 
been modified, the neural network is again trained 
using pattern pi. 
5) The third and fourth steps are repeated for different 
map sizes. 
6) Steps 1 through 5 are repeated for the remaining 
patterns pj, assuming each of these the role of pattern 
pi. 
Several map sizes have been trained using the five 
patterns. The mean values of the errors over the 
available patterns in function of the map number 
were calculated using each pattern as training data. 
The results for pattern 1 as training data are showed 
in Fig. 3. It can be seen that the larger the map size 
the lower the quantization error but the higher the 
topographic error. This is due to the neural network 
folds to reduce the quantization error. Moreover, the 
larger the map size the higher the computational cost. 
Therefore, there is compromise between the increase 
of the topographic error and the reduction of the 
quantization error. A curve, which represents the sum 
of both errors, has been added to the graphics. The 
model whose sidelenghts have been calculated by 
means of equations (3) and (4) correspond to a 
horizontal axis value equal to 6 (map number equal to 
6). The quantization error has been reduced and the 
topographic error has been incremented not very 
much. The final model to estimate the process state of 
the wastewater treatment was trained using pattern 1 
because the values of the errors are the lowest for this 
pattern. 
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Fig. 3. Mean value of errors using pattern 1 as 
training data 
 
 

 
Fig. 4. Best Clustering Technique 
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Fig. 5. Results of Davies-Bouldin Index and Best 
Clustering Structure 
 
 
5   Clustering validation 
The developed software tool carries out a clustering 
process which consists of a two-stage procedure [8] 
and is showed in Fig. 4. Firstly, the prototype vectors 
are obtained training the data of the aerobic phase 
using a SOM algorithm and then clustering them 
using a K-means algorithm, see [9]. Ten clustering 
structures were obtained varying the predefined 
number of clusters. 

Finally, the best clustering structure between the ten 
structures, which have been obtained from the K-
means algorithm, is selected using the Davies-
Bouldin index [10]. This index searches the model 
that minimizes the within-cluster distance and 
maximizes the between-clusters distance and is 
calculated according equation 5, where si and sj are 
the within-cluster distances of clusters i and j, dij is 
the distance between clusters i and j and nc is the 
number of clusters.  
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The Davies-Bouldin index is suitable for evaluation 
of K-means partitioning, because it gives low values 
indicating good clustering results for spherical 
clusters. Fig. 5 shows the Davies-Bouldin index after 
being applied to the data from the aerobic stage of the 
treatment. The best clustering corresponds to a 
number of two clusters and has been projected onto 
the SOM. It is displayed in Fig. 5. Cluster 1 
corresponds to the first hours of the aerobic treatment 
where the values of the controller output are high due 
to the high chemical oxygen demand (COD). During 
this period the biological activity is high and the toxic 
substances are eliminated by means of the cellular 
metabolism, whereas cluster 2 represents the data 
collected after this high biological activity where the 
values of the controller output are lower because the 
COD has decreased. If this is the state of the 
treatment plant, the biological treatment of the 
aerobic stages can be finished improving the capacity 
of the plant. 
 
 
6   Process state estimation 
The developed software is running in a PC station 
that is connected to a data acquisition interface by 
means of Ethernet connection and TCP/IP protocol 
(MODBUS protocol in particular). The proposed AI 
techniques are integrated into this application to 
achieve the process monitoring and the process state 
estimation. Data from the aerobic stage is collected 
on-line automatically to train a SOM network. The 
plant operator can visualize the latest SOM network 
that corresponds to the latest aerobic treatment cycle 
of the plant, viewing the correlation between the 
process variables and the data classification can be 
obtained. The estimation of the current process state 
is also calculated by the validated pattern (pattern 1). 
The training data set must only contain the samples of 
the aerobic stage and is determined by the mean value 
of the controller output because this signal can be 
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considered as a key variable to estimate the states of 
the treatment, see [1] and [11]. 
The results of the latest SOM network can be 
visualized in Fig. 6 and they correspond to the latest 
aerobic stage of the wastewater treatment. They are 
the U-matrix, the component planes and the best 
clustering structure. Each component plane shows the 
value of each neuron to estimate the data variable of 
the input space. It is useful to determine the several 
zones where the variable value is high or low and to 
observe any correlation or relationship between 
process variables.  
The correlations between variables can be observed, 
for example, between the controller output and the 
oxygen concentration. Also there is a correlation 
between the controller output and the temperature in 
the reactor due to the higher the temperature the 
lower the dissolved oxygen concentration and the 
controller must compensate this effect. As mentioned 
above, the best clustering structure is composed of 2 
clusters and is calculated by means of the Davies-
Bouldin index. A cluster corresponds to HIGH COD 
and the other is the LOW COD. 
The cycles of the biological treatment at the 
sequencing batch reactor can be clearly observed in 
Fig. 8 and Fig. 9. The higher values correspond to the 
anoxic stage when the controller output is saturated 
and equal to 100%. The rest of the data corresponds 
to the aerobic stage (including sedimentation). 
An important aspect appears: the end-point of the 
aerobic reaction. This end-point detection can be used 
to finalize the aerobic stage and in this way the 
duration of the cycle is shorter increasing the 
operating capacity of the plant. The estimation of the 
time of the main activity of the treatment (aerobic 
phase end-point) achieves operating cost savings and 
increases the plant performance; see [12], [13], [14] 
and [15]. The duration of the cycle was initially 48-
72 hours one year ago, see Fig. 8, and it has been 
reduced to 24 hours as is showed in Fig. 9. In this 
way the operating capacity of the plant has been 
increased by reducing the retention time. In Fig. 7 the 
process state is estimated projecting the current 
values onto a SOM network by means of standing out 
the best matching neuron from the rest of the 
neurons. This SOM network is used as a pattern and 
is previously stored and validated using the validation 
method explained above (pattern 1). The projection is 
carried out onto the component planes and the best 
clustering structure. Thus, important on-line 
knowledge is obtained and the end of the main 
biological activity can be identified. 
 
 
 

 
Fig. 6. SOM Training Results 
 
 

 
Fig. 7. Process State Estimation 
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Fig. 8. Process Values of one year ago 
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Fig. 9. Current Process Values 
 
 
7   Conclusions 
The results verify that the developed neural network 
model can achieve the estimation of the process state 
of the biological treatment. After model validation a 
software tool was developed to supervise a coke 
wastewater treatment plant (CWTP) and is a stand-
alone application which is composed of the data 
acquisition system from the CWTP and the proposed 
AI technique. The data set of the aerobic stage is 
collected to train automatically a SOM network. The 
data classification is obtained using K-means 
algorithm as partitive clustering algorithm and 
Davies-Bouldin index for clustering validation. The 
estimation of the current process state can be 
assigned calculating the best matching neuron that 
corresponds to the current process values. The end-
point of the aerobic reaction can be detected by this 
AI technique. So, operating cost savings are achieved 
and the plant performance is increased. In this way, 
total retention time was reduced from 48-72 hours to 
24 hours. 
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