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Abstract: Processing text components in multimedia contents remains a challenging issue for document index-
ing and retrieval. More specifically, handwritten characters processing is a very active field of pattern recognition.
This paper describes an innovative two-dimensional approach for character recognition and segmentation. The
method proposed combines Markovian modeling, efficient decoding algorithm together with a windowed spectral
features extraction scheme. A rigorous evaluation methodology is achieved to analyse and discuss the perfor-
mances obtained for digit and word recognition.
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1. Introduction

Handwriting analysis has been performed by ap-
plying a wide variety of methodologies [8]. Geo-
metric approaches [13] are simple to implement but
their globality is a serious limitation. Handwritten
words analysis can be efficiently processed with robust
one-dimensional statistical methods based on Markov
chains with good results on constrained tasks [9].
However, the 2D nature of the handwriting is ob-
vious but no fully satisfying 2D approach has been
found yet: statistical models such as pseudo-2D [6]
and causal 2D models [12] attempt to solve this prob-
lem but they are limited by directional independence
and causal hypothesis respectively.

We propose a fully 2D approach of handwriting
recognition that can be applied to every step of doc-
ument processing and we apply it to handwritten dig-
its and handwritten words recognition. Most of the
techniques performed are well-known (except two-
dimensional dynamic programming, explained in Sec-
tion 2.2) but the proposed combination is original.
Markov chains, spectral features and dynamic pro-
gramming have been successfully used in speech pro-
cessing while Markov random field modeling and lo-
cal feature extraction are key tools for image analysis.
The synopsis of these interactions is shown on Fig-
ure 1. Section 2 addresses the main theoretical back-
ground of our approach while Section 3 describes how
these principles are applied to a digit recognition task.
Section 4 extends the proposed method to handwritten

words recognition. Section 5 concludes the paper and
opens new perspectives for improving and extending
the presented 2D Markov modeling.
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Figure 1. Synopsis of the synergies between Hand-
writing recognition, image analysis and speech pro-
cessing.

2. Approach

The framework of our approach is based on Markov
models which are popular statistical models for pattern
recognition.

2.1. Markov Random Fields

Markov models are widely used for a variety of
problems in pattern recognition [3]. It is based on
the markovian assumption of short term dependency
which seems to be valid for most of the images en-
countered in computer vision.



In this context, an image I is a set of sites (i, j) as-
sociated to labels ωi,j ∈ S, where S = {s1, s2, ..., sN}
is the set of states of the model. A region R is a subset
of adjacent sites of an image, and the associated set of
labels is the configuration of the region ωR.

The markovian assumption assumes that the depen-
dency between the states of the sites reduces to a local
one:

P (ωi,j | ωI\(i,j)) = P (ωi,j | ωN(i,j)), (1)

where N(i, j) is the set of sites which are neighbors of
(i, j). N is a neighboring function if, for every pair of
sites (i, j) and (k, l),

(i, j) ∈ N(k, l) ⇔ (k, l) ∈ N(i, j). (2)

A convenient way to handle neighboring relations is
to use cliques: a clique is a set of sites which are neigh-
bors. In 4-connexity, cliques correspond to single sites
and vertical and horizontal pairs of sites.

With this formalism it is possible to use the Gibbs
distributions which are equivalent to a Markov Ran-
dom Field [1]:

P (ω) =
1

Z
exp(−

∑

c∈C

Vc(ω)) (3)

where C is the set of cliques, Vc is a potential func-
tion associated with cliques c and Z is a normalisation
constant so that

∑

ω P (ω) = 1.
Hidden Markov Random Fields (HMRF) are a class

of Markov fields with an observation layer. Each site
of an image is associated to an observation which can
be a number or a vector. Let us denote the observed
image O = {oi,j}. The observation of one site only
depends on the underlying hidden state:

P (O | ω) =
∏

i,j

P (oi,j | ωi,j). (4)

The problem of finding the optimal configuration
reduces to the problem of finding ω̂ that minimizes:

U(ω) =
∑

(i,j)

− log(P (o(i,j) | ω(i,j))) +
∑

c∈C

Vc(ω).

(5)

2.2. Decoding algorithm

Given a Markov model, the decoding procedure
aims at assigning labels to the sites. Given the param-
eters of the model, the optimal configuration is defined
as:

ω̂ = arg max
ω

P (O | ω). (6)

Several methods have been proposed to perform this
maximization such as simulated annealing [4], which
is very slow, or Iterated Conditional Modes (ICM) [2],
which give a sub-optimal solutions. More restrictive
assumptions such as causality in the Markov modeling
can reduce the decoding to a 1D problem that can be
easily solved with dynamic programming [11]. More
recently, an extension of dynamic programming to the
multi-dimensional case has been proposed [5] and can
be easily applied for the decoding of Markov Random
Fields. This work is the first application of this 2D Dy-
namic Programming (2DDP) algorithm to handwriting
recognition.

Let us consider a partition of an image into two re-
gions R1 and R2. Let ∂R1 and ∂R2 be the boundaries
of these regions, that is the sites belonging to cliques
that contain sites from two different regions (Figure 2).
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Figure 2. Partition of the image into two regions (R1

and R2) that can be divided into sub-regions. Only the
sites belonging to boundaries are represented.

For a given configuration ω, let ω1, ω2, ∂ω1 and ∂ω2

be the restrictions of this configuration respectively to
R1, R2, ∂R1 and ∂R2. The function to minimize U
can be written with different terms for the two regions
and an interaction term I associated to the sites of the
boundary.

U(ω) = U(ω1) + I(∂ω1, ∂ω2) + U(ω2).

The notations U(ω1) and U(ω2) are simplified no-
tations for UR1

(ω1) and UR2
(ω2) and correspond to

the terms of U(ω) that depend on only one region.
The term I(∂ω1, ∂ω2) is a simplified notation for
I∂R1,∂R2

(∂ω1, ∂ω2) and corresponds to the remaining
terms, associated to cliques that cross the boundary.

Let us consider two configurations ω and ω′ that
have the same configurations on the boundary (i.e.



(∂ω1, ∂ω2) = (∂ω′
1, ∂ω′

2)). In this case, we have:

U(ω1) < U(ω′
1)

U(ω2) < U(ω′
2)

}

⇒ U(ω) < U(ω′).

Hence, for a given configuration of the boundaries
(∂ω1, ∂ω2), it can be seen that:

ω̂1 = arg min U(ω1)
ω̂2 = arg min U(ω2)

}

⇒ ω̂1∪ω̂2 = arg min U(ω1∪ω2),

that is,
ω̂ = ω̂1 ∪ ω̂2.

So that it is not necessary to compute the summa-
tions U(ω1) + I(∂ω1, ∂ω2) + U(ω2) for every ω1 and
ω2 to find the optimal configuration. Only the opti-
mal configurations ω̂1 and ω̂2 must be stored for every
configuration of the boundaries ∂ω̂1 and ∂ω̂2.

Let ∂Ωr (r = 1, 2) be the set of possible config-
urations of the boundaries of regions Rr, and Ω̂r =
{ω̂r/∂ωr ∈ ∂Ωr} the optimal configurations of the
sites inside of the regions for each configuration of the
boundary. The global optimum ω̂ is obtained by com-
bining the configurations of Ω̂1 and Ω̂2 and selecting
the minimum:

ω̂ = arg min
(ω̂1,ω̂2)∈Ω̂1×Ω̂2

U(ω̂1)+I(∂ω1, ∂ω2)+U(ω̂2).

This process can be iterated: Ω̂1 can be computed
from Ω̂1.1 and Ω̂1.2 the same way. Only one part of
the boundaries of R1.1 and R1.2 remains in the new
boundary of the region R1 (in grey on Figure 2).

At each step, for a region Rr, Ω̂r can be computed
from the optimal configurations of two sub-regions
Ω̂r.1 and Ω̂r.2, and so on and so forth until elementary
regions of one site are reached. At this point elemen-
tary regions can be initialized as being in any of the N
states.

From a set of elementary regions, regions are
merged two by two by keeping only the best config-
uration of each configuration of the boundary until the
whole image is in one region.

The order in which the regions are merged (called
the merging policy) can be of any type. It will not
influence the result but it can influence the computa-
tional cost. For a m×n image, considering every con-
figuration would have a computational cost of Nm×n.
Using 2DDP, if regions are merged line by line, the
cost would be (m×n)×Nm. In practice, this number
is usually too high, but a pruning strategy can decrease
this cost to a tractable one by removing less promising
intermediate configurations of the regions.

2.3. Feature extraction and observation densities
modeling

The values of the observation O are directly ex-
tracted from the original image. A great variety of
feature extraction types have been proposed in the lit-
erature, that highly depend on the type of modelization
used [13].

In the context of a HMRF modeling, 2D local fea-
tures must be extracted. A windowed analysis of the
image can extract observations that are represented as
vectors. We use a 2D windowed spectral features ex-
traction that is fully continuous and extracts informa-
tion about the main directions in the image. It con-
sist in computing a 2D Fourier transform in a window
(regularized with a 2D Gaussian window) and extract-
ing selected coefficients in module and phase. The first
coefficients (i.e. located near the center of the result-
ing image), the low frequency coefficients keep infor-
mation on strokes and directions. Figure 3 gives an
illustration of this process.
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Figure 3. 2D spectral local features extraction.

For every state s, P (o|s) is the observation den-
sity which is efficiently stored using mixtures of Gaus-
sians. These mixtures can fit any real distribution. The
EM algorithm is efficient to compute the parameters
from a set of samples. There we have:

P (o|s) =
M
∑

i=1

kiG(o, µi,ω, Σi,ω),

where G(o, µ, Σ) is the value in o of a Gaussian
function of mean µ and covariance matrix Σ (in prac-
tice, a diagonal matrix), and where

∑M
i=1 ki = 1. An

example of a real distribution with the corresponding
mixture of Gaussians can be seen on Figure 4.
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Figure 4. Real distribution with corresponding mix-
ture of Gaussians.

3. Application to handwriting recognition

The simplest way to handle a short vocabulary task
(such as digit recognition) is to perform a model dis-
criminant approach of recognition:

C = arg max
ck

P (ck | O) = arg max
ck

P (O | ck)P (ck).

C is the most probable class of the pattern among
the ck given that O is observed. If we have a set of
models for these ck, 2DDP can perform the computa-
tion of P (O | ck). The probabilities P (ck) is known
from the statistics of the training set.

Hence, the remaining issues are the choice of the
database, of the state space of the HMRF, of the merg-
ing policy of 2DDP and of a strategy for the training
of the models (observations densities and cliques po-
tentials).

3.1. Database

The MNIST database [10] is a widely used and pub-
licly available database of handwritten digits. A few
samples extracted from the database can be seen on
Figure 5

There is a training set of 60, 000 samples and a test-
ing set of 10, 000 samples. For the development and
tuning of the algorithm, we divided the training set into
a development set and validation set, so that we only
performed few evaluations on the testing set. Perform-
ing more evaluations on the testing set would include
knowledge from the testing set into the algorithms and
give results which are not completely realistic. For
class i, the validation set is the last ni samples of the
training set where ni is the number of samples in the
corresponding testing set.

Figure 5. Samples from the MNIST database.

3.2. State space

To capture the shape of characters, models must
keep information on the strokes and particularly their
direction and relative position. To capture this infor-
mation, states can be associated to homogeneous por-
tions of strokes in the image. The features described in
section 2.3 are efficient to extract the local features in
terms of directions. Cliques potentials (cf. section 2.1)
can keep the information about the relative position of
these strokes.

Figure 6 illustrates the expected segmentation into
states. Each of the 35 states is associated with an ho-
mogeneous portion of the image in terms of position
and stokes directions. In our experiment, the 5 × 7
states models gave the best results as it could be ex-
pected regarding to the shape of digit 8.
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Figure 6. Expected segmentation of a sample image
into 35 states.

3.3. Merging policy and pruning strategy

As explained in section 2.2, the merging policy
should not have any influence on the results but on the
computational cost. In practice, a real 2DDP decod-
ing is not tractable, so that a pruning strategy must be
performed. It consists in removing the less promising
configurations that would probably give sub-optimal
final configurations. This principle is known as being
very efficient in speech processing with Markov chains
and 1D dynamic programming [7].

In this case where configurations are removed, it is
important to merge first the regions where the uncer-
tainty is less important. Our merging policy merges



the sites on the external boundary of the image first
and then the ones closer to the center. An illustration
of this merging policy is given by Figure 7.

Figure 7. Merging policy: the external sites are
merged first.

3.4. Features coefficients

Relevant coefficients are selected from the Fourier
transform. Both phases and modules keep important
information. Computing on vector for each pixel is
not necessary, since the different windows are over-
lapping. We found that using 14× 14 images of 10 di-
mensional vectors gives good results (cf. section 3.6).
Figure 8 illustrates the first coefficients extracted from
the Fourier transform, alternatively module and phase.

Figure 8. First coefficients of the feature extraction,
alternatively module and phase.

3.5. Learning strategy

In order to perform the recognition of the digit sam-
ples, a set of models must be available. A digit model
is composed a set of observation densities functions
(one for each state) as well as a set of cliques poten-
tials. The available ground truth for this database re-
duces to the class of the samples so that no information
of segmentation of the training set is available.

A common and efficient way to come through this
issue with 1D problems is to perform a Viterbi learn-
ing which is a simplified EM approach where only the
optimal configuration is kept for computing the ex-
pectation [7]. A first model is computed by using a
regular segmentation of the training samples into 35
states. These first segmentation allows the computa-
tion of initial models (observation densities and tran-

sition probabilities). This models are then used to pro-
cess a 2DDP decoding and getting new segmentations
which will give new model parameters. This process is
then iterated until convergence. This learning strategy
is illustrated Figure 9.
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Figure 9. 2D Viterbi learning.

3.6. Results

Table 1 summarises the results on the validation set
for different types of feature vectors as well as the final
result on the testing set. These results are without a re-
jection process. The processing speed of our algorithm
is about 3 samples per second on a single processor.

Table 1. Error rate for different types of feature vec-
tors

Number of
module and phase (0,2) (4,0) (4,2) (4,4) (8,2)
coefficients
Error rate
on validation set 4.92 % 3.56 % 2.38 % 2.61 % 2.34 %
Error rate
on testing set - - - - 2.48 %

4. Extension to handwritten words recognition

This proposed approach is very general and can be
easily applied to a wide variety of recognition and seg-
mentation tasks. In this section, we propose the exten-
sion to a handwritten words recognition. The database
used for these first experiments on words is the Se-
nior&Robinson database. It is a set of 25 handwrit-
ten pages written by one scriptor and segmented into
words.

A simple way to extend our approach to word pro-
cessing is to build word models by concatenating letter



models. One model is built for each word of the vo-
cabulary but this is different from a holistic approach
since only letter models are trained.

The idea is to build the word models with a concate-
nation procedure where the transition probabilities are
adjusted between the states on the right hand side of
the first letter and the states on the left hand side of the
second letter. This process can be iterated to build any
word model.

Once a word image has been segmented into states,
it is possible to cut the images into letters according to
this segmentation, the set of letter images can then be
used to train letter models as explained in section 3.

Our first experiments give interesting results in
terms of segmentation of the words into letters,
whereas the recognition rate must still increase. Fig-
ure 10 illustrates the segmentation part: the boundary
between sates belonging to different letters is drawn,
and gives the boundary between letters. It can be seen
that this line is not a straight line as it would be ob-
tained with a Markov chain modeling.

Figure 10. Segmentation of words into letters.

5. Conclusion and perspectives

We presented an approach of handwriting recog-
nition based on Markov Random Fields models and
2D dynamic programming. It is a fully 2D model
with an efficient feature extraction procedure and algo-
rithms are available for training and recognition. It has
been successfully applied to handwritten digits recog-
nition and interesting results on word recognition are
expected in the near future.

With such a generic method, many perspectives
arise. To improve the processing speed, the dictionary
can be organized in tree and word models can be com-
puted on the fly. Contextual letter models can be com-
puted if the database is large enough to improve the ac-
curacy. A scriptor adaptation strategy can be used on

the parameters of the HMRF. Finally, document pro-
cessing can be performed in a similar way with two
models of word and non-word and a language model
(n-grams).
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