
A Load Balance Strategy for P2P Networks

MITICĂ CRAUS1) and CĂTĂLIN BULANCEA2)

1) Department of Computer Science an Engineering
Technical University �Gh.Asachi�

Blvd. Dimitrie Mangeron 53A, 700050 Iasi
ROMANIA

2) Institute for Computer Science

Romanian Academy
Blvd. Carol I 22A, 700505 Iasi

ROMANIA

Abstract: - A new decentralized Load Balance (LB) paradigm for P2P Networks is presented and analyzed. Our
strategy is based on a gradient map which is build by a pheromone-like technique inspired from the Ant Colony
Optimization metaheuristic. The tasks are assumed to have a certain running time (T_run), which is considered to
be a random value uniformly distributed in the interval (T_runmin, T_runmax) and a transfer time T_trans, which is
also a random variable from the interval (T_transfmin, T_transfmax). New tasks can appear spontaneously. Each
task is intending to wait a certain time in a workstation, time which cannot exceed a predefined value T_queue;
the probability to request a transfer for another workstation is a random variable uniformly distributed in the
interval (0,T_queue). T_queue parameter is depending of T_transf. When the new tasks do not appear in every
processing node, LB is efficient.

Key-Words: - load balancing, P2P networks, task migration, gradient map, pheromone trails, Ant Colony
Optimization

1 Introduction
Some LB strategies assume centralization. In

these strategies there is a watching device which
measures the unbalance of the system and when this
unbalance exceeds some thresholds, starts the
rebalancing procedure (using either classical,
evolutionary or GA strategies). These strategies are
generally exposed to common drawback in many-to-
one communication paradigm, called bottleneck [2,6].

The decentralized LB strategies try to reach and
maintain a global balance using local neighbor-to-
neighbor transfers. They can be classified in either LB
based on global or local knowledge and connectivity.
A global method has the advantage of the fast load
diffusion, but the communication of type all-to-all can
delay the balancing process if there is a big number of
processing nodes [5]. The approaches based on local
knowledge and connectivity are not affected by the
big number of processors and can easy be expanded.

This characteristic is called scalability [4,6]. One of
the main drawbacks of this approach is the slow
diffusion rate.

In our model, the LB strategy is decentralized and
local. A certain workstation has only local knowledge
about the workload. In order to route the tasks, it uses
a local routing table based on a pheromone trail map
with asymmetric update rules [2]. A priority queue
contains the tasks which intend to run on the
workstation which hosts the queue. Always, the task
with the biggest transfer time will be in the front and
is the first candidate to be performed.

2 Model Description

2.1 Assumptions
In our model, each workstation is regarded as a

node v of a graph G=(V,E), V={1,2,�,n}, E⊆V×V..
Such node is called processing node or computing

node. Connections are represented by edges. The
network topology may be a incomplete graph (a graph
with some of the nodes not connected by edges). That
means that some nodes may work as gateways
between two, three or more sub-graphs, but it is
important to mention that all the nodes have the same
routing system. This strategy is built only on local
knowledge and no global routing systems are required.
The tasks have a certain running time (T_run), which
is a random variable uniformly distributed in the
interval (T_runmin, T_runmax) [2]. It would be
important to mention that the running time is not
known in advance for the routing and the queuing
procedures. There is supposed also that there are no
dependencies between tasks. Time costs are also
considered for transfers. Each task has a transfer time
(T_transf), which was considered as random variable
also, uniformly distributed in the interval (T_transfmin,
T_transfmax). There are also some additional
information attached during task lifetime (the time
between its appearance and the start of its execution).
This information refers to the number of transfers, the
origin node and the task�s ID [1,2].

2.2 Queuing system
The queuing system works as it is shown in Fig. 1.

T1
T2 ... Tk ... Tm Trun

queue�s management thread
execution thread

task queue

privileged position

Fig. 1 � The computational logic of the nodes

As it can be seen in figure above, each node has a

thread for queue�s management. This thread adds or
removes tasks in the queue. The tasks are added in
order of their appearance or arrival at the node. The
implementation of the queue is using the heap
structure. After every insertion or deletion, the heap
structure of the priority queue is remade. In this way,
first position has a special purpose because it hosts the
task with the greatest transfer cost from current node

During its lifetime, each task is queued in
different nodes and waits to be executed. If it is not
executed in a certain time, the task will request
transfer to another node. For a certain task k, queued

in the node i, the probability to request the transfer is
uniformly distributed in the interval (0, T_queuek):









≥

<
=

k

k
kk

queueTt

queueTt
queueT
t

ttransferreqp
_,1

_,
_)(__ (1)

where p_req_transferk(t) is task�s k probability to
request to be transferred to another node, t is the time
spent in current node and T_queuek is the task�s k
time limit for queuing in the current node.

The T_queuek parameter is computed using the
following formula:

min

min
min

_
_

__
*_*_

_

queueT
transfT

transfTtransfT
queueTgradqt

queueT

mink

k

+
−

=

 (2)

where T_queuemin is the minimal value of queuing
time (is assumed to be the queuing time for the tasks
having T_transf = T_transfmin; this is a common value
for all tasks which may appear in the system).

Equation (2) tries to minimize the global time
spent for transfers. It can be said that tasks which have
expensive transfer cost are encouraged to wait more in
nodes.

In order to redirect the transfers to the unexplored
subgraphs, a memory system was designed.
Considering node i is current node for task k, let Ni be
defined as it follows:

}{}|{ iitoadjacentisjjN i ∪= (3)

If task k is deciding to migrate from the node i at

time t, the destination node will be chosen from a
routing table using the next procedure [2].

if (there are unexplored adjacent nodes)
 choose_dest(Ni

(k)�)
else
 choose_dest(Ni

(k)�)

where:
}|{\')(ktaskthebyvisitedalreadywasjjNN i

k
i = (4)

}|{
\")(

jtoifromsometimemigratedalreadyktaskj
NN i

k
i =

 (5)

2.3 Migration routing
In order to increase the efficiency of task

migrations, a modified ACO pheromone trail
metaheuristic is used for task routing [3,4]. As it was
already stated in [1], the trails have directional
attributes and the routing tables are local; the
normalization process is also local
(∑trails=constant).

The value of the entry j of the routing table of
node i (entrij) will be [3]:

∑
∈

=

*

][)]([
][)]([

iNl
ilil

ijij
ij ttr

ttr
entr βα

βα

η
η (6) (2)

where trij is the trail corresponding to the edge ij, α
and β are two parameters that control the relative
weight of the pheromone trail and the heuristic value,
respectively.[4] In this model, the used heuristic (ηij)
could be the inverse of the j-th neighbor load .[2]

The role of α and β is stated as it follows: if α=0,
then the least loaded node is preferred in the selection
process. If on the contrary β=0, the pheromone is the
basic selection criterion. Although this method will
lead in most of the cases to the rapid emergence of
stagnation, in this model this is avoided by using
asymmetrical update rules for the trails.

If a task is leaving the node i for the node j using
the ij edge, then the following update rule is applied
for corresponding trail:

1)()1(trttrttr ijij δ+←+ (7)

where trij is the trail corresponding to the edge ij, and
δtr1 is the amount of trail added to trail ij.

If a task is coming in the node i from the node j
then the trail ij is decreased following the next update
scheme:

2)()1(trttrttr ijij δ∆−←+ (8)

where δtr2 is the amount of trail subtracted from the
trail ij if a task is coming from j to i.

As it was stated before, the trail values are
normalized during the update process and they cannot
take negative values.

In order to increase the efficiency of the task
routing operation toward the nodes with low load, we
have considered δtr1<<δtr2. This restriction will also

minimize the probability of having ping-pong
transfers between nodes.[1] The δtr1 and δtr2 have a
global characteristics; this will result in uniformly
marking transfers around the entire network[2].

For an adjacent node j which was not explored
previously, the probability to be visited by the task k
is:

∑
∈

=

'

)(

)(

)(
)(

)(

k
iNl

l

ijk
ij ttr

ttr
tp (9)

where Ni

(k)� was defined in (5).
If all the adjacent nodes of i were already visited

(including node j) then the node j�s probability to be
chosen by the task k is:

∑
∈

=

"

)(

)(

)(

)(
)(

k
iNl

l

ijk
ij ttr

ttr
tp (10)

where Ni

(k)� was defined in (6).

3 Implementation

The algorithm which implements our model is

stated below. The agents encapsulate tasks (one per
agent); they store also information about the previous
migrations [1].

for each node parallel do
 for each agent in current node do
 if (agent.t < agent.T_queue) then
 agent.decide_t()
 else
 agent.decision=leave
 if (agent.decision=leave) then
 agent.choose_node(pheromon_table)
 agent.add_to_memory(current_node)
 else
 agent.update_t()
 end_for
 population.update()
 leave_update_ph_tables(pheromon_tables)
 exchange_tasks()
 arrive_update_ph_tables(pheromon_tables)
 if (agents arrived in current node) then
 population.update()
 for each agent arrived in node do
 agent.reset_t()
end_parallel_for

4 Experiments
The experiments were done for architecture of 16

computing modules. The communication topology
was represented by a graph G with 16 nodes. In order
to simulate the task transfer between computing
modules, the MPI library was used. The tests were
performed on a Sun HPC service having a backend
with 24 processors.

Task�s running time was not known in advance
for the routing and queuing procedures. This was used
only to measure the efficiency of the LB paradigm. A
random scheme for simulating the task generation was
used. For tests, there were considered three levels of
the task density. These will be detailed below.

LB quality was measured using two parameters:
the average of the speedup and the relative standard
deviation for workload performed in all graph nodes.

For a task k, the speedup can de defined as:

k

k
k lifetime

waittsp _
= (11)

where:
- waitk is the the period from the task birth

(appearance) until the task running, in the case of
the lack of the load balancing strategy. This means
that the task does not migrate.

- =klifetime

k
ktaskbyvisitedi

i transftcountmigrnodeinwaitt _*____ +∑
−

 (12)

and migr_count stores the number of migrations for
task k.

The relative standard deviation was defined as:

workloadavg
relstdev

_
σ

= (13) (6)

where:
- σ is the standard deviation for workload performed

in graph nodes;

1

)__(2

−

−
=
∑
∈

n

workloadavgworkloadp
Gi

i

σ (14)

- avg_workload is the average value of workload

performed in nodes.

- p_workloadi represents the performed workload on
node i

- G is the graph topology used for experiments with n
nodes.

The topology used for experiments is shown in
Fig. 2.

1

2

3

4

5

7

0

6
8

9

10

11
12

13

14 15

Fig. 2 - Graph topology used for
experiments

In the charts bellow the two performance
parameters stated before are visualized.

For experiments, it was chosen the next set of
constrains:

simulationTrunT _*1.0_ max =

maxmax _*5.0_ runTtransfT = (15)

minmin __ runTtransfT ≅
and T_simulation was considered the global time of
simulation.

First set of tests was made using a technique of
generating tasks inside few computing nodes (n/3
nodes). Tasks were generated only in nodes having
rank=3*k, k integer. The average value of the tasks
per experiment was 87.9.

0

0.5

1

1.5

2

0.125 0.25 0.375 0.5

T_queuemin/T_runmax

Speedup

Relative
standard
deviation

Fig. 3 � Experiments for low density of the tasks

appearance

As it can be observed in Fig. 3, in the case of the

systems with low density of the tasks appearance, it
makes sense to perform transfers intensively. The

average speedup value is increasing if more transfers
are made.

The second set of tests was performed using a
generation scheme that works over n/2 processing
nodes. The tasks were generated only in the nodes
with an odd rank. The average value of tasks per
experiment was 116.4.

0

0.5

1

1.5

2

0.125 0.25 0.375 0.5

T_queuemin/T_runmax

Speedup

Relative
standard
deviation

Fig. 4 � Experiments for average density of the

task

In systems with average density of the tasks
appearance, the LB procedure offers good average
speed-up, but a high transfer rate affects negatively
the LB performance.

Third set of tests was made using a procedure of
generation tasks inside every processing node. The
average value of tasks per experiment was 242.3.

0

0.2

0.4

0.6

0.8

1

1.2

0.125 0.25 0.375 0.5

T_queuemin/T_runmax

Speedup

Relative
standard
deviation

Fig. 5 � Experiments for high density of the tasks

appearance
As it can be seen in Fig. 5, in the case of high

density of the tasks appearance, a high transfer rate
makes the LB process inefficient. To solve this
situation, is better to use a procedure which sends with
high accuracy the tasks from overloaded to
underloaded nodes. However, a small transfer rate is
showing some improvement.

5 Conclusions and Future Work
Applying our LB paradigm, the load of a

distributed system evolves continuum to a uniform
distribution, without blocking the activity in order to
balance the load. Also, is not necessary to accumulate
information about an eventually unbalancing.

As it was observed in the experiments, the
performance of our LB strategy is depending on the
way that the tasks may appear in the system. When
new tasks do not appear in every processing node, LB
is efficient.

The future work will be focused on improving the
adaptive capacity of our LB paradigm by adding a
local self optimizing method for T_queuemin parameter.
The simulation time will be split in phases and after
each phase, a self-evaluating procedure will be
performed for each node. The T_queuemin parameter
will be adjusted locally, depending on the each node�s
efficiency for previous phase.

6 Credits
The authors would also like to acknowledge the

support of the Romanian HPC Centre
�CoLaborator�.

References
[1] M. Craus and C. Bulancea, An agent based model

for real-time load balancing in non-uniform
connected computing environments, In Intelligent
Systems - Selected papers from ECIT 2004, Iasi,
Romania, 2004, pp.239-250.

[2] M. Craus and C. Bulancea, A decentralized Load-
Balancing strategy using gradient maps", in
Intelligent Systems - Selected papers from SASM
2005, Iaşi, Romania, 2005, pp. 79-88.

[3] M. Dorigo and G. Di Caro, The Ant Colony
Optimization Meta-Heuristic, New Ideas in
Optimization, D. Corne, M. Dorigo and F. Glover
(eds), McGraw-Hill, 11-32.

[4] M. Dorigo, G. Di Caro and L. M. Gambardella,
Ant Algorithms for discrete optimization,
Artificial Life, Vol. 5, No. 3, 1999, pp. 137-172.

[5] D. Grigoras, Parallel Computing � Systems and
Applications, Computer Libris Agora, 2000, Cluj
Napoca, Romania, pp. 338-360.

[6] D. Heinrich, The Liquid Model Load Balancing
Method, Journal of Parallel Algorithms and
Applications, Special issue on Algorithms for
enhanced Mesh Architectures, Karlsruhe
University,1996.

