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Abstract: - A new decentralized Load Balance (LB) paradigm for P2P Networks is presented and analyzed. Our 
strategy is based on a gradient map which is build by a pheromone-like technique inspired from the Ant Colony 
Optimization metaheuristic. The tasks are assumed to have a certain running time (T_run), which is considered to 
be a random value uniformly distributed in the interval (T_runmin, T_runmax) and a transfer time T_trans, which is 
also a random variable from the interval (T_transfmin, T_transfmax).  New tasks can appear spontaneously. Each  
task is intending to wait a certain time in a workstation, time which cannot exceed a predefined value T_queue;  
the probability to request a transfer for another workstation is a random variable uniformly distributed in the 
interval  (0,T_queue). T_queue parameter is depending of T_transf. When the new tasks do not appear in every 
processing node, LB is efficient. 
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1 Introduction 
Some LB strategies assume centralization. In 

these strategies there is a watching device which 
measures the unbalance of the system and when this 
unbalance exceeds some thresholds, starts the 
rebalancing procedure (using either classical, 
evolutionary or GA strategies). These strategies are 
generally exposed to common drawback in many-to-
one communication paradigm, called bottleneck [2,6].  

The decentralized LB strategies try to reach and 
maintain a global balance using local neighbor-to-
neighbor transfers. They can be classified in either LB 
based on global or local knowledge and connectivity. 
A global method has the advantage of the fast load 
diffusion, but the communication of type all-to-all can 
delay the balancing process if there is a big number of 
processing nodes [5]. The approaches based on local 
knowledge and connectivity are not affected by the 
big number of processors and can easy be expanded. 

This characteristic is called scalability [4,6]. One of 
the main drawbacks of this approach is the slow 
diffusion rate.  

In our model, the LB strategy is decentralized and 
local. A certain workstation has only local knowledge 
about the workload. In order to route the tasks, it uses 
a local routing table based on a pheromone trail map 
with asymmetric update rules [2].  A priority queue 
contains the tasks which intend to run on the 
workstation which hosts the queue. Always, the task 
with the biggest transfer time will be in the front and 
is the first candidate to be performed.  

 
2 Model Description 
 
2.1 Assumptions 
In our model, each workstation is regarded as a 

node v of a graph G=(V,E), V={1,2,�,n}, E⊆V×V.. 
Such node is called processing node or computing 



node.  Connections are represented by edges. The 
network topology may be a incomplete graph (a graph 
with some of the nodes not connected by edges). That 
means that some nodes may work as gateways 
between two, three or more sub-graphs, but it is 
important to mention that all the nodes have the same 
routing system. This strategy is built only on local 
knowledge and no global routing systems are required. 
The tasks have a certain running time ( T_run), which 
is a random variable uniformly distributed in the 
interval (T_runmin, T_runmax) [2]. It would be 
important to mention that the running time is not 
known in advance for the routing and the queuing 
procedures. There is supposed also that there are no 
dependencies between tasks. Time costs are also 
considered for transfers. Each task has a transfer time 
(T_transf), which was considered as random variable 
also, uniformly distributed in the interval (T_transfmin, 
T_transfmax).  There are also some additional 
information attached during task lifetime (the time 
between its appearance and the start of its execution). 
This information refers to the number of transfers, the 
origin node and the task�s ID [1,2]. 

 
2.2 Queuing system 
The queuing system works as it is shown in Fig. 1. 
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Fig. 1 � The computational logic of the nodes 
 
As it can be seen in figure above, each node has a 

thread for queue�s management. This thread adds or 
removes tasks in the queue. The tasks are added in 
order of their appearance or arrival at the node. The 
implementation of the queue is using the heap 
structure. After every insertion or deletion, the heap 
structure of the priority queue is remade. In this way, 
first position has a special purpose because it hosts the 
task with the greatest transfer cost from current node 

During its lifetime, each task is queued in 
different nodes and waits to be executed. If it is not 
executed in a certain time, the task will request 
transfer to another node. For a certain task k, queued 

in the node i, the probability to request the transfer is 
uniformly distributed in the interval (0, T_queuek): 
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where p_req_transferk(t) is task�s k probability to 
request to be transferred to another node, t is the time 
spent in current node and T_queuek  is the task�s k 
time limit for queuing in the current node. 

The T_queuek parameter is computed using the 
following formula: 
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where T_queuemin  is the minimal value of queuing 
time (is assumed to be the queuing time for the tasks 
having T_transf = T_transfmin; this is a common value 
for all tasks which may appear in the system). 

Equation (2) tries to minimize the global time 
spent for transfers. It can be said that tasks which have 
expensive transfer cost are encouraged to wait more in 
nodes.  

In order to redirect the transfers to the unexplored 
subgraphs, a memory system was designed. 
Considering node i is current node for task k, let Ni be 
defined as it follows: 

 
}{}|{ iitoadjacentisjjN i ∪=             (3) 

   
If task k is deciding to migrate from the node i at 

time t, the destination node will be chosen from a 
routing table using the next procedure [2]. 

 
if (there are unexplored adjacent nodes) 
  choose_dest(Ni

(k)�) 
else 
  choose_dest(Ni

(k)�) 
 

where: 
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2.3 Migration routing 
In order to increase the efficiency of task 

migrations, a modified ACO pheromone trail 
metaheuristic is used for task routing [3,4]. As it was 
already stated in [1], the trails have directional 
attributes and the routing tables are local; the 
normalization process is also local   
(∑trails=constant).  

The value of the entry j of the routing table of 
node i (entrij)  will be [3]: 
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where trij is the trail corresponding to the edge ij, α 
and β are two parameters that control the relative 
weight of the pheromone trail and the heuristic value, 
respectively.[4] In this model, the used heuristic (ηij) 
could be the inverse of the j-th neighbor load .[2] 

The role of α and β is stated as it follows: if α=0, 
then the least loaded node is preferred in the selection 
process. If on the contrary β=0, the pheromone is the 
basic selection criterion.  Although this method will 
lead in most of the cases to the rapid emergence of 
stagnation, in this model this is avoided by using 
asymmetrical update rules for the trails. 

If a task is leaving the node i for the node j using 
the ij edge, then the following update rule is applied 
for corresponding trail:  

 
1)()1( trttrttr ijij δ+←+                                   (7) 

 
where trij is the trail corresponding to the edge ij, and 
δtr1 is the amount of trail added to trail ij. 

If a task is coming in the node i from the node j 
then the trail ij is decreased following the next update 
scheme: 

 
2)()1( trttrttr ijij δ∆−←+                                 (8) 

 
where δtr2 is the amount of trail subtracted from the 
trail ij if a task is coming from j to i. 

As it was stated before, the trail values are 
normalized during the update process and they cannot 
take negative values.  

In order to increase the efficiency of the task 
routing operation toward the nodes with low load, we 
have considered δtr1<<δtr2. This restriction will also 

minimize the probability of having ping-pong 
transfers between nodes.[1] The δtr1 and δtr2 have a 
global characteristics; this will result in uniformly 
marking transfers around the entire network[2]. 

For an adjacent node j which was not explored 
previously, the probability to be visited by the task k 
is: 
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where Ni

(k)� was defined in (5). 
If all the adjacent nodes of i were already visited 

(including node j) then the node j�s probability to be 
chosen by the task k is: 
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where Ni

(k)� was defined in (6). 
 

3 Implementation 
 
The algorithm which implements our model is 

stated below. The agents encapsulate tasks (one per 
agent); they store also information about the previous 
migrations [1]. 

 
for each node parallel do 
  for each agent in current node do 
    if (agent.t < agent.T_queue) then 
      agent.decide_t() 
    else 
      agent.decision=leave 
    if (agent.decision=leave) then 
      agent.choose_node(pheromon_table) 
      agent.add_to_memory(current_node) 
    else 
      agent.update_t() 
  end_for 
  population.update() 
  leave_update_ph_tables(pheromon_tables) 
  exchange_tasks() 
  arrive_update_ph_tables(pheromon_tables) 
  if (agents arrived in current node) then 
    population.update() 
    for each agent arrived in node do 
      agent.reset_t() 
end_parallel_for



 
4 Experiments 
The experiments were done for architecture of 16 

computing modules. The communication topology 
was represented by a graph G with 16 nodes. In order 
to simulate the task transfer between computing 
modules, the MPI library was used. The tests were 
performed on a Sun HPC service having a backend 
with 24 processors.  

Task�s running time was not known in advance 
for the routing and queuing procedures. This was used 
only to measure the efficiency of the LB paradigm. A 
random scheme for simulating the task generation was 
used. For tests, there were considered three levels of 
the task density. These will be detailed below. 

LB quality was measured using two parameters: 
the average of the speedup and the relative standard 
deviation for workload performed in all graph nodes.  

For a task k, the speedup can de defined as: 
  

k

k
k lifetime

waittsp _
=                                                   (11)  

where:  
- waitk is the the period from the task birth 

(appearance) until the task running, in the case of 
the lack of the load balancing strategy. This means 
that the task does not migrate. 
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and migr_count stores the number of migrations for 
task k.  

The relative standard deviation was defined as:  
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where:  
- σ is the standard deviation for workload performed 

in graph nodes; 
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- avg_workload is the average value of workload 

performed in nodes. 
 

 

- p_workloadi represents the performed workload on 
node i 

- G is the graph topology used for experiments with n 
nodes. 

The topology used for experiments is shown in 
Fig. 2. 
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Fig. 2 - Graph topology used for 
experiments 

In the charts bellow the two performance 
parameters stated before are visualized. 

For experiments, it was chosen the next set of 
constrains:  

simulationTrunT _*1.0_ max =  

maxmax _*5.0_ runTtransfT =                         (15) 

minmin __ runTtransfT ≅   
and T_simulation was considered the global time of 
simulation.  

First set of tests was made using a technique of 
generating tasks inside few computing nodes ( n/3 
nodes). Tasks were generated only in nodes having 
rank=3*k, k integer. The average value of the tasks 
per experiment was 87.9. 
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Fig. 3 � Experiments for low density of the tasks 

appearance  

 
As it can be observed in Fig. 3, in the case of the   

systems with low density of the tasks appearance, it 
makes sense to perform transfers intensively. The 



average speedup value is increasing if more transfers 
are made. 

The second set of tests was performed using a 
generation scheme that works over n/2 processing 
nodes. The tasks were generated only in the nodes 
with an odd rank. The average value of tasks per 
experiment was 116.4. 
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Fig. 4 � Experiments for average density of the 

task 

In systems with average density of the tasks 
appearance, the LB procedure offers good average 
speed-up, but a high transfer rate affects negatively 
the LB performance.     

Third set of tests was made using a procedure of 
generation tasks inside every processing node. The 
average value of tasks per experiment was 242.3. 
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Fig. 5 � Experiments for high density of the tasks 

appearance  
As it can be seen in Fig. 5, in the case of high 

density of the tasks appearance, a high transfer rate 
makes the LB process inefficient. To solve this 
situation, is better to use a procedure which sends with 
high accuracy the tasks from overloaded to 
underloaded nodes. However, a small transfer rate is 
showing some improvement. 

 

5 Conclusions and Future Work 
Applying our LB paradigm, the load of a 

distributed system evolves continuum to a uniform 
distribution, without blocking the activity in order to 
balance the load. Also, is not necessary to accumulate 
information about an eventually unbalancing.  

As it was observed in the experiments, the 
performance of our LB strategy is depending on the 
way that the tasks may appear in the system. When 
new tasks do not appear in every processing node, LB 
is efficient. 

The future work will be focused on improving the 
adaptive capacity of our LB paradigm by adding a 
local self optimizing method for T_queuemin parameter. 
The simulation time will be split in phases and after 
each phase, a self-evaluating procedure will be 
performed for each node. The T_queuemin parameter 
will be adjusted locally, depending on the each node�s 
efficiency for previous phase.   
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