MPEG-4 SDK: From Specifications to Real Applications

OCTAVIAN FOLEA, MARIUS PREDA, FRANCOISE PRETEUX
ARTEMIS Project Unit
GET-INT
9, rue Charles Fourier, 91000 Evry,
FRANCE

Abstract: - Nowadays, multimedia contents are invading the digital world through a wide family of distribution
channels, and are played on terminals with various capabilities and resources. In such hybrid and heterogeneous
environments, the availability of international standards enabling application interoperability becomes a strong
requirement. MPEG-4 is a powerful multimedia standard in terms of media representation, scene composition,
and user interactivity. However, building an MPEG-4 application demands an in-depth knowledge of MPEG-4
specifications which currently limits the world wide deployment of the standard. In order to facilitate MPEG-4
usability for non-expert developers, this paper addresses the technical issues related to the implementation of an
MPEG-4 Software Development Kit (SDK). By focusing on the MPEG-4 scene composition level and on the
graphics representation features, we build a low-level MPEG-4 SDK (scene graph access, media and stream
processing) compliant with scene and media specifications. The more specific issue of virtual character
animation is addressed by developing an intuitive API; it is referred to as MPEG-4 VC API and supports high-
level functionalities (data-based semantic access, hierarchical object processing and stream control). We
demonstrate the relevance of this toolkit for the easy design and creation of real applications by implementing a
plug-in providing MPEG-4 content importing/exporting. No particular knowledge of the MPEG-4 standard is
therefore required. The SDK toolkit is extensively evaluated within the OLGA IST FP6 European Project.

Key-Words: multimedia systems, MPEG-4, graphics content creation, virtual characters, 3dsmax

1 Introduction

Starting with the nineties, the boom of the
computer graphics field has been determined by the
migration of the 3D software platforms from SGI
workstations to PCs. Increased availability and
demand, advanced technologies, and improved
hardware were the keywords that convinced the
major market actors to create powerful authoring
tools for 2D/3D content processing. Maya
(Alias|Wavefront), 3dsmax (Discreet), Animation
Master (Hash Inc.), XSI (Softlmage), Poser
(Curious Lab) are popular and functionality-rich
software solutions spread all over the world. But
the “jungle” of the proprietary data formats
developed on each of these platforms raised
fundamental problems for end-user software
integrators: poor performance of format conversion
software, inadequacy of these formats for specific
applications and difficulty to use undocumented (or
not sufficient documented) proprietary solutions.

These reasons motivated the computer graphics
community to start developing open standards in
order to achieve two key requirements:
interoperability and access to the specifications.
The former ensures the common bases for
applications and solutions provided by independent
parties and the later prevents the situation in which
a unique company can maintain and control the

updates and the development process of the
standard. Recently, Alias released a file format
called FBX, with the goal of providing the
reference format for exchanging 3D content
between authoring tools. Alias FBX is a platform-
independent 3D authoring and interchange format
that provides access to 3D content from most 3D
vendors. The FBX file format supports all major
3D data elements, as well as 2D, audio, and video
media elements [8]. Despite its advanced features,
FBX represents a proprietary solution.
CyberVRML [6] is a low-level API, wrapped on
VRML nodes, allowing easy integration of a
VRML parser into 3D applications. Among existent
or on-going multimedia standards, MPEG-4 [1] is
one of the most complete in terms of media
representation, compression, 2D and 3D graphics
primitives, user interaction and programmatic
environment. As a member of the MPEG family,
the MPEG-4 standard inherits and improves all the
features of its predecessors, offering the possibility
of efficient transmitting and/or storing a huge
amount of digital audio / video. Furthermore, the
standard jumps a great step forward with key-
techniques, as advanced audio coding, video
compression-based on visual object, wavelet
deployment and mesh-based representation. The
most promoting feature of MPEG-4 is probably the
definition of Blnary Format for Scenes (BIFS) as a
part of system information, which lies on the top of

all media data and acts as an intermediate layer
between media data and the final displayed content.
It makes possible to manipulate various types of
media in an MPEG-4 scene, such as scheduling,
coordinating in temporal and / or spatial domain,
synchronizing, processing interactivity, etc. BIFS is
based widely on Virtual Reality Modeling
Language (VRML) [2]. It is a binary encoded
version of an extended subset of VRML, which can
represent roughly the same scene as with VRML in
a much more efficient manner. The wide range of
functionalities supported by MPEG-4 makes this
standard one of the most complete and advanced
solution, and companies are slowly deploying
MPEG-4 technologies inside their applications. As
for example, let us mention the Keynote toll from
Apple which allows exporting MPEG-4
presentations [2]. However, the main drawback of
integrating MPEG-4 solutions is the complexity.
Today, in order to include MPEG-4 content within
an application, a software developer has to
implement: (1) MPEG-4 codec for each of the
elementary stream that composing the MPEG-4
scene, and (2) MPEG-4 importer/exporter for his
own data structures. This requires an advanced
MPEG-4 expertise over the standard and an
expensive development effort. Moreover, the
developed MPEG-4 modules are application-
specific, and difficult to re-use. In order to ease the
understanding of the standard, the MPEG group
also released a special part called Reference
Software [3] which implements the specifications
(usually in a not-optimized manner). The Reference
Software can be used as a starting point in
developing applications or as a reference for
implementing optimized software. However, good
knowledge of the standard is required in both cases.
Unfortunately, the MPEG group does not provide
any Software Development Kit (SDK) that can be
used to solve decoding and formatting the MPEG-4
data.

In this paper we propose such MPEG-4 SDK. The
flexible framework proposed makes it possible to
support the MPEG-4 functionalities to ease the
integration phase by modulating and reuse of code

(Fig.1).

Application 2

Application-specific
MPEG-4 module 2

Application 1

Application-specific
MPEG-4 macdule 1

(@)

Application 1 Application 2

(b)

Fig.1 — (a) Independent application development (b)
Development using the MPEG-4 SDK.

The structure of this paper is as follows. Section 2
presents the basic concepts of the MPEG-4 SDK, a
low-level API that wrap the scene graph and the
elementary streams. Then, a high-level API derived
from the MPEG-4 SDK, called Virtual Character
SDK (VC SDK) is described. VC SDK deals with
the definition and animation of a skinned model as
specified in MPEG-4 Part 16 — Animation
Framework eXtension (AFX) [4]. The
implementation principles of the MPEG-4 SDK
and VC SDK are reported. Finally, Section 3
demonstrates the relevance of these APIs for
developing applications. The presented application
is an MPEG-4 importer/exporter plug-in for virtual
characters, which allows transforming 3dsmax into
a fully-compatible MPEG-4 authoring tool. The
final section summarizes and discusses the
experimental results and opens the perspectives for
future work.

2 MP4SDK concepts

Defining the SDK for a data format can be
performed at two levels: a low-level for wrapping
the data representation and a high-level for
accessing according to their semantic meaning. The
first level is generic, while the second one is
specific to the type of data. Both approaches are
used in our implementation: the low-level API
gives access to the entire scene graph and to the
media layer. The high-level API, defined for a
specific part of the standard, namely the
representation of a VC, allows semantic-based
access on the definition and the animation of a
skinned model.

2.1 Low-level API: MPEG-4 SDK

The MPEG-4 SDK is designed to offer an access to
the MPEG-4 fundamental elements - the BIFS
scene and the elementary streams — transparently
with respect to the compression layer. The user of
this SDK must know the interface of the nodes
defined by the standard but no knowledge is

required concerning how this information is
compressed. Fig.2 presents the MPEG-4 SDK
architecture.

MPEG-4

scene
encoder MPEG-4
N file
MP4 Stream 1 MPEG-4

stream
encodets

MP4 Stream n

Fig.2 —Architecture of MPEG-4 SDK.

The MPEG-4 SDK main functionalities refer to (1)
encoding/decoding MPEG-4 scene and elementary
streams; (2) browsing and modifying the attributes
of MPEG-4 scene nodes and the content of MPEG-
4 elementary streams, and (3) creating/deleting
MPEG-4 scene nodes and elementary streams.

The MPEG-4 fundamental concepts split the design
of the low-level API into two components, namely
SceneAPI, which handles the access to scene
information and scene nodes, and MediaAPI,
which manipulates elementary streams. Fig.3
illustrates the user scenario when using the SDK,
for both SceneAPI and MediaAPIL.

profiles as input data to produce a reduced-size
MPEG-4 SDK that fits the chosen profile (Fig.4).

MPEG-4 SDK
for the selected
profile

List of the wrappers
for the scene nodes

List of the wrappers
for the elementary
streams

Profile under

consideration List of all MPEG-4

- List of specific MPEG-4 scene nodes
nodes

- List of specific MPEG-4

elementary
streams
List of all MPEG-4

elermentary streams

Fig.4 — MPEG-4 SDK generator.

Create / delete
MPEG-4
SCENE nodes

Modify the
MPEG-4 sceng
node attributes

Erowse the
MPEG-4
scene nodes

Create anew
MPEG-4 scene

Encade a MPEG-4
scene to an output
MPEG-4 file

Decode a MPEG-4
scene from an input
MPEG-4 file

Create a new
MPEG-4
elernentary stream

Modify the content

of MPEG-4
‘ elementary streams

Decode the MPEG-4
elementary streams

Encode the
MPEG-4
elermnentary streams

Retrieve the content
of MPEG-4
elerentary streams

into
the MPEG-4 scene

2.2 High Level API: Virtual Character SDK

The high-level APIs add new processing functions
and simplify the access to the MPEG-4 objects.
These APIs are designed for the developers who
are not familiar with MPEG-4 concepts and need to
rapidly integrate the MPEG-4 content into their
software platforms. We designed such API for the
specific case of defining and animating a VC. The
main concept used by MPEG-4 for representing a
virtual character is the skeleton, defined as a
hierarchical graph of bones. By attaching the
skeleton to the VC shape (referred to as the skin)
and by allowing to apply geometric transformations
to the bones, deformations of the skin are possible.
The animation framework, called Bone-based
Animation (BBA), offers high visual quality of the
representation and the animation, and is a generic
approach suitable for any kind of articulated figure
(animals, humans and plants). The features
provided by the Virtual Character SDK, defined on
the top of BBA specifications, are described below:

Data Operations

Scene - encode / decode the entire scene

- access the VC model list

- encode / decode / modify the animation
stream

Fig.3 — User scenario for MPEG-4 SDK: in white the
components of the SceneAPI and in gray the
components of the MediaAPI.

Model - get / set the model name
- access the bone and root bone hierarchy
- add / remove skin shapes

Implementing an MPEG-SDK supporting all the
scene nodes and elementary streams would be a
useless task since it does not exists any application
that can use all the nodes. A real MPEG-4
application is likely to use only a few of the
approximately 200 scene nodes and 10 elementary
streams defined by the standard. This is why
MPEG-4 defines the concept of profile [7] which
represents a subset of tools that can be used for a
large class of applications and services. The "SDK
Generator" software component uses MPEG-4

Bone - access the parent model

- get / set the bone name

- retrieve the bone 1D

- access the parent bone

- get / set the transformation matrix

- access the list of influenced points with
corresponding weights

- access the children bone list

Skin - access the parent model

shape - retrieve the appearance of the shape
(material and/or texture)

- access the list of polygons

- access the list of edges

Skin - retrieve the parent shape
polygon - access the list of edges
- access the list of neighborhood

relationships: polygons, edges

Skin edge | - access the parent shapes
- access the list of neighborhood
relationships: polygons, edges

Skin - retrieve the list of parent shapes

vertex - access the list of bones that influence it
with corresponding weights

- access the list of neighborhood
relationships: polygons, edges

2.3 Implementation issues

The MP4SDK is a C++ library based on the
MPEG-4 Reference Software (IM1). Our current
implementation is generated by using the
"Animated Character" profile. This profile,
currently under consideration within the MPEG
community, selects 11 nodes in the scene graph and
2 streams from the media layer. The components of
this profile (the list of scene nodes and elementary
streams) and the corresponding SDK classes are
described in Fig.5.

SceneAPI represents the wrapper over the scene
nodes declared in the MPEG-4 Reference Software
(IM1). The wrapping mechanism is the following:
the SDK core class, MP4ProxyNode, contains a
reference to the core class of IMI scene node,
MediaObject. Then, every wrapper node is created
by deriving the MP4ProxyNode class and casting
the MediaObject reference to the specific node. The
example below shows the creation of the
MP4SBSkinnedModel wrapper node (Fig.7).

hediaObject
(fram Core)

WDeletel)
‘De\ete\lalueo
RatFieldiDg
Beetinn

R etNumFields)
Wnserdvalued
*IsRootO
‘MedlanjemO
P arseChildl)
‘Remo\reo
BRemoveChild)
‘Remo\reParentO
‘ReplaceNodeO
‘ReplaceValueO

MP4Froxytode
(from MPASDE)

% etCarel)

WAPAP rosorModel)

T avittuals> WriteField()
Bz2vituals> FillDatag)
Vaayitualz> WiiteD atag)
Beayitualss mMPAPoxyNode)

‘SetParentO
Bponst-> GetChildrenCount)
%:2consts> GetChildranField()
R2constr> GetMamelDO
Rezoonster GetParent]
%avituals= GetRenderingNade()
R<avittualz> UpdateFieldd
% avintuals> ~hedialbject)

fr WMP4SBSkinnedhodel

(from MP4SDK)

¥GetBones)
SBSkinnediodel :ze::ntTtiSno
i C etSeale
= (=T %G ets caleOrientation
[
$5BSkinnedModeld) ’zztgtier:;tono

B3 etShinCoordinatel)

% G etSkinNormal()
’GetTransIatlonO
¥MP4SESkinnedhodall)

Profile Animated Character MP4 SDK
List of specific List of the wrappers
MPEG-4 nodes for the scene nodes
- SBYCAnimation - MP4SBYCAnimation
- SBSkinnedModel SDK Generator - MP4SESkinnediodel
- SBBaone - MP45EBone
- Shaps - MP4Shape
_ IndexedFaceSet List of all MPEG-4 - MP4IndexedF aceSet
- Coordinate SCene nodes - MP4Coordinate
- Normal - MP4Normal
- Appearance - MP4Appearance
- Image Texture - MP4Image Texiure
- Material List of all MPEG-4 - MP4Material
- MorphShape elementary - MP4MorphShape
streams
List of specific List of the wrappers
MPEG4 streams for the streams
-BEBA - MP4BBA
= JFEE - MP4JPEG

Fig.7 — An example of node wrapping mechanism.

Fig.5 — The SDK generator applied to the animated
character profile.

2.3.1 MPEG-4 SDK

The main class of the MPEG-4 SDK is MP4Engine.

It is in charge of: loading/saving a MPEG-4 file,
decoding/encoding the MPEG-4 scene,
creating/deleting MPEG-4 wrapper nodes, filtering
the access to MPEG-4 nodes and to elementary
streams. It is derived from the IM1 Application
class (Fig.6).

MPEngine Application

(ftam MP45DK) (rarn Core)
$CreatePANodE] :<<abstract>> OnConnectr)
$DeleteMode]) <<ahstract=» OnFinish()
$GetMP4Object) $22anstract>» OnEror()
$Gethadert]) [$<<abstract=> OnFatalError)
$GatiodeCount) $eeapstract>> Navigate()
$Getsireamat) ¥2zabstract-> OverSensor()
$oetstrearmCount) ¥<<apstract=>» SetSize()
:MP“E”WEO $2zapstract>> ViewponStackChanged()

SECIAIAL $<<apstract=> GetApplicationMame()

$-MP4ENGIne)

oo o jicati i
S TR ISR abstracts> Getspplicationy/ersion()

$<<abatracts> GetWorldURL()

Fig.6 — The engine of the MPEG-4 SDK.

MediaAPI represents the wrappers over the
MPEG-4 elementary streams. The wrapping
mechanism is described as follows: the SDK core
stream class, MP4Stream, contains a reference to
the IMI1 core stream consumer class,
StreamConsumer. Every wrapper stream is created
by deriving the base class MP4Stream and
overwriting its methods. An example of creating
such a stream wrapper is presented below (Fig.8).

StreamConsumer
(from Core)

MPAStream

:C\oseStreamO {from MPASDK)
GetStream

$GetURL) 0 SGetStanTime()
¥sStreamOpent) S5 etStantTime()
ShletlURL]) SGethediaStartTimel)
$0penStream() SSethlediaStart Time()
PStreamConsumer) $GethediaEndTimer)
SritaToStream() SSethediaEndTimel)

S yitual>> GetCurrentAU)
Soevirtual>> PushAUQ

Sz ayinual>> Loop()
$zavinuals> Encodel)

$<<consts> GetDecoder)
$<ayittual=> Fetch)
Sovirtual>> Release()
Sozyirtual=> SetStraami)
$oyintual=> Start()
Soeyitualz= Stop()

Fig.8 — The elementary stream wrapping mechanism.

2.3.2 VC SDK

The VC SDK adds an extended layer over the
MPEG-4 SDK by providing virtual character
specific functionalities. New classes for skin edge

and skin polygon are integrated into the API. An
example of virtual character wrapper over the
MPEG-4 SDK class (MP4SBSkinnedModel) is
shown in Fig.9.

MP4SESkinnediodel

{from MP4SDK) WCharacter

(from MP4VC)

P ayirtual=> CreateFieldsFilter()
$GetSkinMormal()
$GetSkinCoordinate)
P4SESkinnediodel()

®addRootBone()
@ AddShape)
®DeleteBoneAt()

GetSkeleton() | ¥DeleteRootBonet])
*GetBones() DeleteShapedt])
*GetSking GetBoneAt()
SGetTranslation() $GetBoneCount()

i ®GetRootBoneAt
GetRotat etRootBoneAt])
‘Gstsg:llelgm % GetRootBoneCount()
$GetScaleOrientation() :GBtShapENO
GetSkeleton() GetShapeCount()

Fig.9 — The VC wrapping mechanism.

3 MP4SDK applications

As an example of using the MP4SDK, loading an
MPEG-4 file is performed by MP4Engine class,
calling the method LoadMP4File(fileName). Then,
one can retrieve all the nodes of a specific type, by
calling GetNodesByType(nodeType). After
updating the scene nodes, a new MPEG-4 file can
be created by SaveMP4File(fileName).

In order to validate the developed SDKs, we
implement a 3dsmax to MPEG-4 import export
module.

3.1 MPEG-4 plug-in for 3dsmax

One of the most popular authoring tools (AT) for
games and for 3D content in general is 3D Studio
Max published by Discreet. This software package
is an ongoing platform, enriched at each version
with new features. Moreover, its architecture makes
possible the development of plug-ins by
independent parties. By using high-level and
interactive tools, this software packages afford the
creation and the animation of complex 3D objects
and scenes. Although very advanced with respect to
specialized tools and ergonomic interfaces, 3dsmax
does not include mechanisms for the compression
of the geometry and the animation parameters. On
the other hand, the MPEG-4 standard had provided,
in its first version, -1998 - the compression of the
geometry based on indexed face set. Later on, in
2003, the MPEG community published the MPEG-
4 Part 16 which includes specifications for
modeling and animating of virtual characters,
including the compression of the animation
parameters. By building an import/export module,
we are focusing on mapping between the high level
tools provided by 3dsmax and the low level
representation provided by MPEG-4.

Using a set of seven 3dsmax models, we have
validated the exporting of static attributes
(geometry, materials and textures) and dynamic
attribute (the animation stream), performing a
comparative visualization using 3dsmax versus the
MPEG-4 Player [5]. Similar results have been
obtained. The importer module was validated by
using two models previously exported from
3dsmax. Finally, the relevance of the animation
was validated by playing the imported and the
original content in the 3dsmax environment and the
exported content by using the MPEG-4 Player. No
differences were noticed between the two
playbacks. Some frames from the animation
sequence, obtained using the MPEG-4 Player and
3dsmax, are shown in Fig.10.

© MPEG-4 Player
File Edt View Help Test

= LdLid

O af = LEEY

;Iy\ssse»u PP LORB|RESY S

NUM SCR

= MPEG-4 Player
Fle Edit View Help Test

=3 o| RN

Esabovoap=ESab|:

q__wm D)
I AP LLAPSARAPARRAPARRRP AR
‘a Ehm‘nwhdmn <] e

uuuuu Sekey| e, | wi[i7]

i

For Help, press Fi NUM SCR

Fig.10 — The MPEG-4 Player snapshot of the exported
model'.

4 Conclusion

In order to facilitate MPEG-4 usability for non-
expert developers, this paper addressed the
technical issues related to the implementation of an
MPEG-4 Software Development Kit (SDK). By
focusing on the MPEG-4 scene composition level
and on the graphics representation features, we
described the main concepts of a low-level MPEG-
4 SDK (scene graph access, media and stream
processing) compliant with scene and media
specifications. The more specific issue of virtual
character animation was addressed by developing
an intuitive API referred to as MPEG-4 VC API
and supporting high-level functionalities (data-
based semantic access, hierarchical object
processing and stream control). We demonstrated

' With courtesy of EPFL-VRLab for the initial model.

the relevance of this toolkit for the easy design and
creation of real applications by implementing a
3dsmax plug-in for importing/exporting MPEG-4
content and a virtual character scalability engine. In
developing these applications, no particular
knowledge of the MPEG-4 standard was required.
Our future work will deal with the development of
a streaming client/server system based on
MP4SDK which is able to transmit and play
MPEG-4 scalable content.

References

[1] ISO/IEC 14496-1:2001 Information
technology: Coding of audio-visual objects, Part 1:
Systems, International Standard Organization (1SO),
Switzerland, 2001.

[2] ISO/IEC 14772-1:1998, Information
technology: Computer graphics and image
processing, The Virtual Reality Modeling Language,
Part 1: Functional specification and UTF-8 encoding,
International ~ Standard Organization (1SO),
Switzerland, 1998.

[3] ISO/IEC 14496-5:2001 Information
technology: Coding of audio-visual objects, Part 5:
Reference Software, International Organization for
Standardization, Switzerland, 2001.

[4] M. Bourges-Sevenier, F. Moran, M. Steliaros,
M. Preda, M. Han (Eds), ISO/IEC 14496 [MPEG-4]
Part 16: Animation Framework eXtension (AFX)
International Standard Organization (1SO),
Switzerland, 2003.

[5] MPEG-4 3D Player, http://www-artemis.int-
evry.fr/~preda/MPEG-4/.

[6] Cyber VRML 97,
http://www.cybergarage.org/vrml/cv97/cv97cc/index.
html.

[7] F. Pereira, T Ebrahimi, The MPEG-4 book,
IMSC Press Multimedia Series/Andrew Tescher,
2002.

[8] Alias FBX, Universal 3D Asset Exchange,
http://www.alias.com/eng/products-services/fbx/

[9] Apple Keynote,
http://www.apple.com/iwork/keynote/

