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Abstract

In this paper, first we will find the so-
lution of the system A * X < b, where
A, b are the known suitable matrices and
X is the unknown matrix over a pseudo-
Boolean lattice. Then its application to
find the solution of some fuzzy linear sys-
tems as well as finding the solution of the
optimization problem Z = maz{C*X|Ax
X < b} is discussed.
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1 Introduction and prelim-

inaries

Linear and combinatorial optimization have

been studied by many authors [5]. Op-
timization over residuted, lattice-ordered
commutative monoid is studied in [5]. On
the other hand in many applications, one
need to find the solution of fuzzy linear

systems of equations and inequalities over

a bounded chain in [3]. In this paper we
replace a bounded chain by any pseudo-
Boolean lattice R, which is recently stud-
ied in [1]. Then by using the approach in
[5] we will solve linear system A x X < b,
over R. The method given here is very
easy to be applied for solving the fuzzy
linear systems studied in [3].

Definition 1.1. [1,5] A bounded lattice
(L, <) is called pseudo-Boolean if for all

a,b € L, there exists ¢ € L such that
aNrz<bszx<c Vel

If such element ¢ exists, then it is unique
and will be denoted by b : a.

For the following remark see [5].
Remark 1.2. (i) Every finite distribu-
tive lattice is pseudo-Boolean.
(ii) In a Boolean lattice B, one can see
that b: a = bV a*. Hence B is pseudo-
Boolean.
(iii) In general, a pseudo-Boolean lattice
may not be Boolean. For example con-
sider a bounded chain (L, <). Then a A

b =min(a,b) , a Vb= max(a,b) and



1 if b>a
b if b<a

for all a,b € L. But L is not Boolean,

since for any a; 0 < a < 1, we have

aV(0:a)=aV0=a<1

For the following theorem see Propo-
sition 1.17 of [5] and Theorem 1.6.11 of
[2].

Theorem 1.3. Let L be a lattice.

(i) If L is pseudo-Boolean lattice, then it
is distributive.
(ii) If L is complete infinitely distributive
lattice, then it is pseudo-Boolean.
Definition 1.4. A non-empty set H
with binary operation *x : H x H — H

is called a semigroup if
a*x(bxc)=(axb)*xc Va,b,c€ H.

A semigroup H is called a monoid if it
contains an element e € H such that for

alla € H,
exa=axe=a.

Definition 1.5. Let H be a commuta-
tive semigroup with a reflexive and tran-
sitive order < on it. Then (H, <) is called
an ordered commutative semigroup if
a<b=—=axc<bxc Va,b,ce H.

Definition 1.6. Let (H,<) be an or-

dered commutative semigroup. Then H

is called residuated semigroup, if for all

a,b € H, there exists ¢ € H such that:
axr<bsxrx<c VreH.

If such an element ¢ € H exists for all
a,b € H, then it is called a residual of b
with respect to a.

Remark 1.7. If the order relation < on
H is antisymmetric, then a residual ¢ €
H is uniquely determined and denoted by
b:a.

Definition 1.8. Let (H, <) be an or-
dered commutative semigroup(monoid).
If the order < on H is a partial order then
(H, <) is called a lattice-ordered commu-
tative semigroup(monoid).

Example 1.9. Every lattice (H, <) is a
lattice-ordered commutative semigroup, by
letting * = A. Clearly a bounded lattice
is a lattice-ordered commutative monoid
in this way.

Through this paper suprimum and in-
fimum over the empty set ¢ are taken to

be 0 and 1; respectively.

2 Solutions of Ax X <

If R is a residuated semigroup, then for

all a,b € R, there exists ¢ € R such that
axr<bsr<c VxeR.

This result can be extended to matrix
inequalities. Let A = (aij)mxn, X =

(zj)nx1, b = (bi)mx1, be matrices over



R, ie. aij,25,b; € R, for 1 = 1,2,...,m
and j = 1,2,...,n. Define

m

Ax X = ((\/ @ij * Tj)i)mx1- (1)
j=1

For the following theorem see Proposition
10.7 of [5].

Theorem 2.1. Let R be a residuated,
lattice-ordered commutative monoid. Let
A and B be m x m and m X r matrices

over R; respectively. Let C as
(C)jk = inf{bik : ayili = 1,2,...,m}.
Then for all X € M, «,(R), we have:
Ax X <B&e X<C (2)

where A % X is defined in (1). Hence B :
A=C.

Corollary 2.2. Let (R, <) be a bounded
chain, * = A and A, b be m X n and
m X 1 matrices over R; respectively. Then
the system A x X < b is consistent and
the greatest solution of this system is X,
such that the j —th component of X, is
xj = A\{bi|b; < a;j}. Moreover, all of the
solutions of the system A x X < b are
between 0 and X, where 0 is the zero
matrix for which all of its elements are
the least element of R.

Proof: Since R is a bounded chain, as

in Remark 1.2(iii), we have:
(b : A)j = an{bz : aij\z' = 1,2, ,m}

= an{bz‘bl < aij},

where infimum over empty set is taken
1. Clearly by (1) b : A is the greatest
solution. O

Example 2.3 [3]. Let R = [0,1] and
x = A. Consider the fuzzy linear system
Ax X <b, where

0.3 09 09 04 0.2
0.7 0 09 04 0.7
A=106 01 0 08 05 |,
0.8 0.7 04 0.2 0.7
0.4 0.1 02 05 0.1

and
b=(0.9,0.9,0.7,0.7,0.5) ,
where ’ is the transpose operation.

By Corollary 2.2 we have :
xz1 =inf{0.7} = 0.7

To =infop =1
x3=1infp=1

xq =inf{0.7} = 0.7
x5 =info = 1.

So,

/

X, = (0.7,1,1,0.7,1)

Remark 2.4. Note that the fuzzy lin-
ear system in Example 2.3 is solved by a
different approach in [3].

Corollary 2.5. Let X be an arbitrary
set. Consider the Boolean lattice
(P(X),C), *=Aand V=U. Let A and
b be m xn and m x 1 matrices over P(X);
respectively. Then the system A x X <b

is consistent and the greatest solution of



system is X, such that the j —th com-
ponent of X, is z; = ;L (b; U ag;).
Proof: It follows from Theorem 2.1 and
Remark 1.2(ii).

Example 2.6. Let R = P(X), where
X is the chain of non-negative real num-
bers R=9. Consider the system AxX <b

as follows :

=
S
)
=
N

[4,6]
[1,2]Nz U [1,3]Nzy C [8,10]

0,3]Nnzy € [2,6],

where * = A. By using Corollary 2.5, we
have:

x1 = (2,400) , z2 = (3,+00). Hence

/

Xg?" = ((27 +OO), (37 +OO))

3 Optimization problem

Theorem 3.1. Let R be a lattice-ordered
commutative monoid, A, X, b, C be mxn,
nx1,mx1,1xn, matrices over R; respec-
tively. The optimal solution of optimiza-
tion problem maz{Z = Cx X|Ax X < b},
where * is define in (1), is Xy = b : A,
which is given in Theorem 2.1.
Example 3.2. Consider the optimiza-
tion problem maz{Z = C * X|A+ X <
b}, where A, b be as in Example 2.3, and
C = (04,0.5,0.2,0,0.8). Then X, =
(0.7,1,1,0.7,1)/ is the optimal solution
and Z* = 0.8.

Example 3.3. Consider the optimiza-
tion problem max{Z = C+x X|AxX < b},
where A, b be as in Example 2.6, and C' =
([5,7],[4,8]). Then Xy = ((2, +00), (3, +00))
is the optimal solution and Z* = [4, 8].
Remark 3.4. In another paper we will
discuss the solution of the linear systems

Ax X >band Ax X =b.
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