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Abstract

In this paper, first we will find the so-

lution of the system A ∗ X ≤ b, where

A, b are the known suitable matrices and

X is the unknown matrix over a pseudo-

Boolean lattice. Then its application to

find the solution of some fuzzy linear sys-

tems as well as finding the solution of the

optimization problem Z = max{C∗X|A∗
X ≤ b} is discussed.
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1 Introduction and prelim-

inaries

Linear and combinatorial optimization have

been studied by many authors [5]. Op-

timization over residuted, lattice-ordered

commutative monoid is studied in [5]. On

the other hand in many applications, one

need to find the solution of fuzzy linear

systems of equations and inequalities over

a bounded chain in [3]. In this paper we

replace a bounded chain by any pseudo-

Boolean lattice R, which is recently stud-

ied in [1]. Then by using the approach in

[5] we will solve linear system A ∗X ≤ b,

over R. The method given here is very

easy to be applied for solving the fuzzy

linear systems studied in [3].

Definition 1.1. [1,5] A bounded lattice

(L,≤) is called pseudo-Boolean if for all

a, b ∈ L, there exists c ∈ L such that

a ∧ x ≤ b ⇔ x ≤ c ∀x ∈ L.

If such element c exists, then it is unique

and will be denoted by b : a.

For the following remark see [5].

Remark 1.2. (i) Every finite distribu-

tive lattice is pseudo-Boolean.

(ii) In a Boolean lattice B, one can see

that b : a = b ∨ a∗. Hence B is pseudo-

Boolean.

(iii) In general, a pseudo-Boolean lattice

may not be Boolean. For example con-

sider a bounded chain (L,≤). Then a ∧
b = min(a, b) , a ∨ b = max(a, b) and



b : a =




1 if b ≥ a

b if b < a

for all a, b ∈ L. But L is not Boolean,

since for any a; 0 < a < 1, we have

a ∨ (0 : a) = a ∨ 0 = a < 1

.

For the following theorem see Propo-

sition 1.17 of [5] and Theorem I.6.11 of

[2].

Theorem 1.3. Let L be a lattice.

(i) If L is pseudo-Boolean lattice, then it

is distributive.

(ii) If L is complete infinitely distributive

lattice, then it is pseudo-Boolean.

Definition 1.4. A non-empty set H

with binary operation ∗ : H × H −→ H

is called a semigroup if

a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀a, b, c ∈ H.

A semigroup H is called a monoid if it

contains an element e ∈ H such that for

all a ∈ H,

e ∗ a = a ∗ e = a.

Definition 1.5. Let H be a commuta-

tive semigroup with a reflexive and tran-

sitive order ≤ on it. Then (H,≤) is called

an ordered commutative semigroup if

a ≤ b =⇒ a ∗ c ≤ b ∗ c ∀a, b, c ∈ H.

Definition 1.6. Let (H,≤) be an or-

dered commutative semigroup. Then H

is called residuated semigroup, if for all

a, b ∈ H, there exists c ∈ H such that:

a ∗ x ≤ b ⇔ x ≤ c ∀x ∈ H.

If such an element c ∈ H exists for all

a, b ∈ H, then it is called a residual of b

with respect to a.

Remark 1.7. If the order relation ≤ on

H is antisymmetric, then a residual c ∈
H is uniquely determined and denoted by

b : a.

Definition 1.8. Let (H,≤) be an or-

dered commutative semigroup(monoid).

If the order ≤ on H is a partial order then

(H,≤) is called a lattice-ordered commu-

tative semigroup(monoid).

Example 1.9. Every lattice (H,≤) is a

lattice-ordered commutative semigroup, by

letting ∗ = ∧. Clearly a bounded lattice

is a lattice-ordered commutative monoid

in this way.

Through this paper suprimum and in-

fimum over the empty set φ are taken to

be 0 and 1; respectively.

2 Solutions of A ∗ X ≤ b

If R is a residuated semigroup, then for

all a, b ∈ R, there exists c ∈ R such that

a ∗ x ≤ b ⇔ x ≤ c ∀x ∈ R.

This result can be extended to matrix

inequalities. Let A = (aij)m×n, X =

(xj)n×1, b = (bi)m×1, be matrices over



R, i.e. aij , xj , bi ∈ R, for i = 1, 2, ..., m

and j = 1, 2, ..., n. Define

A ∗ X = ((
m∨

j=1

aij ∗ xj)i)m×1. (1)

For the following theorem see Proposition

10.7 of [5].

Theorem 2.1. Let R be a residuated,

lattice-ordered commutative monoid. Let

A and B be m × m and m × r matrices

over R; respectively. Let C as

(C)jk = inf{bik : aij |i = 1, 2, ..., m}.

Then for all X ∈ Mn×r(R), we have:

A ∗ X ≤ B ⇔ X ≤ C (2)

where A ∗ X is defined in (1). Hence B :

A = C.

Corollary 2.2. Let (R,≤) be a bounded

chain, ∗ = ∧ and A, b be m × n and

m×1 matrices over R; respectively. Then

the system A ∗ X ≤ b is consistent and

the greatest solution of this system is Xgr

such that the j − th component of Xgr is

xj =
∧{bi|bi < aij}. Moreover, all of the

solutions of the system A ∗ X ≤ b are

between 0 and Xgr, where 0 is the zero

matrix for which all of its elements are

the least element of R.

Proof: Since R is a bounded chain, as

in Remark 1.2(iii), we have:

(b : A)j = inf{bi : aij |i = 1, 2, ..., m}

= inf{bi|bi < aij},

where infimum over empty set is taken

1. Clearly by (1) b : A is the greatest

solution. �

Example 2.3 [3]. Let R = [0, 1] and

∗ = ∧. Consider the fuzzy linear system

A ∗ X ≤ b, where

A =




0.3 0.9 0.9 0.4 0.2

0.7 0 0.9 0.4 0.7

0.6 0.1 0 0.8 0.5

0.8 0.7 0.4 0.2 0.7

0.4 0.1 0.2 0.5 0.1




,

and

b = (0.9, 0.9, 0.7, 0.7, 0.5)
′
,

where ′ is the transpose operation.

By Corollary 2.2 we have :

x1 = inf{0.7} = 0.7

x2 = infφ = 1

x3 = infφ = 1

x4 = inf{0.7} = 0.7

x5 = infφ = 1.

So,

Xgr = (0.7, 1, 1, 0.7, 1)
′
.

Remark 2.4. Note that the fuzzy lin-

ear system in Example 2.3 is solved by a

different approach in [3].

Corollary 2.5. Let X be an arbitrary

set. Consider the Boolean lattice

(P (X),⊆), ∗ = ∧ and ∨ = ∪. Let A and

b be m×n and m×1 matrices over P (X);

respectively. Then the system A ∗ X ≤ b

is consistent and the greatest solution of



system is Xgr such that the j − th com-

ponent of Xgr is xj =
⋂m

i=1(bi ∪ ac
ij).

Proof: It follows from Theorem 2.1 and

Remark 1.2(ii).

Example 2.6. Let R = P (X), where

X is the chain of non-negative real num-

bers R≥0. Consider the system A∗X ≤ b

as follows :




[0, 2] ∩ x1 ⊆ [4, 6]

[1, 2] ∩ x1 ∪ [1, 3] ∩ x2 ⊆ [8, 10]

[0, 3] ∩ x2 ⊆ [2, 6],

where ∗ = ∧. By using Corollary 2.5, we

have:

x1 = (2, +∞) , x2 = (3, +∞). Hence

Xgr = ((2, +∞), (3, +∞))
′
.

3 Optimization problem

Theorem 3.1. Let R be a lattice-ordered

commutative monoid, A, X, b, C be m×n,

n×1, m×1, 1×n, matrices over R; respec-

tively. The optimal solution of optimiza-

tion problem max{Z = C∗X|A∗X ≤ b},
where ∗ is define in (1), is Xgr = b : A,

which is given in Theorem 2.1.

Example 3.2. Consider the optimiza-

tion problem max{Z = C ∗ X|A ∗ X ≤
b}, where A, b be as in Example 2.3, and

C = (0.4, 0.5, 0.2, 0, 0.8). Then Xgr =

(0.7, 1, 1, 0.7, 1)
′

is the optimal solution

and Z∗ = 0.8.

Example 3.3. Consider the optimiza-

tion problem max{Z = C∗X|A∗X ≤ b},
where A, b be as in Example 2.6, and C =

([5, 7], [4, 8]). Then Xgr = ((2, +∞), (3, +∞))
′

is the optimal solution and Z∗ = [4, 8].

Remark 3.4. In another paper we will

discuss the solution of the linear systems

A ∗ X ≥ b and A ∗ X = b.
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