Optimization Over Pseudo-Boolean Lattices

M.Hosseinyazdi, A.Hassankhani and M.Mashinchi Faculty of Math. and Computer Sciences Kerman University, Kerman, IRAN

Abstract

In this paper, first we will find the solution of the system $A * X \leq b$, where A, b are the known suitable matrices and X is the unknown matrix over a pseudo-Boolean lattice. Then its application to find the solution of some fuzzy linear systems as well as finding the solution of the optimization problem $Z = max\{C*X|A*$ $X \leq b\}$ is discussed.

Key-words: pseudo-Boolean lattice, linear programming, fuzzy linear systems, optimization.

1 Introduction and preliminaries

Linear and combinatorial optimization have been studied by many authors [5]. Optimization over residuted, lattice-ordered commutative monoid is studied in [5]. On the other hand in many applications, one need to find the solution of fuzzy linear systems of equations and inequalities over a bounded chain in [3]. In this paper we replace a bounded chain by any pseudo-Boolean lattice R, which is recently studied in [1]. Then by using the approach in [5] we will solve linear system $A * X \leq b$, over R. The method given here is very easy to be applied for solving the fuzzy linear systems studied in [3].

Definition 1.1. [1,5] A bounded lattice (L, \leq) is called pseudo-Boolean if for all $a, b \in L$, there exists $c \in L$ such that

 $a \wedge x \leq b \Leftrightarrow x \leq c \quad \forall x \in L.$

If such element c exists, then it is unique and will be denoted by b : a.

For the following remark see [5].

Remark 1.2. (i) Every finite distributive lattice is pseudo-Boolean.

(ii) In a Boolean lattice B, one can see that $b : a = b \lor a^*$. Hence B is pseudo-Boolean.

(iii) In general, a pseudo-Boolean lattice may not be Boolean. For example consider a bounded chain (L, \leq) . Then $a \land$ b = min(a, b), $a \lor b = max(a, b)$ and

$$b: a = \begin{cases} 1 & if \quad b \ge a \\ b & if \quad b < a \end{cases}$$

for all $a, b \in L$. But L is not Boolean, since for any a; 0 < a < 1, we have

$$a \lor (0:a) = a \lor 0 = a < 1$$

For the following theorem see Proposition 1.17 of [5] and Theorem I.6.11 of [2].

Theorem 1.3. Let L be a lattice.

(i) If L is pseudo-Boolean lattice, then it is distributive.

(ii) If L is complete infinitely distributive lattice, then it is pseudo-Boolean.

Definition 1.4. A non-empty set Hwith binary operation $* : H \times H \longrightarrow H$ is called a semigroup if

$$a * (b * c) = (a * b) * c \quad \forall a, b, c \in H.$$

A semigroup H is called a monoid if it contains an element $e \in H$ such that for all $a \in H$,

$$e * a = a * e = a.$$

Definition 1.5. Let *H* be a commutative semigroup with a reflexive and transitive order \leq on it. Then (H, \leq) is called an ordered commutative semigroup if $a \leq b \Longrightarrow a * c \leq b * c \quad \forall a, b, c \in H.$

Definition 1.6. Let (H, \leq) be an ordered commutative semigroup. Then H is called residuated semigroup, if for all $a, b \in H$, there exists $c \in H$ such that:

 $a*x \leq b \Leftrightarrow x \leq c \quad \forall x \in H.$

If such an element $c \in H$ exists for all $a, b \in H$, then it is called a residual of b with respect to a.

Remark 1.7. If the order relation \leq on H is antisymmetric, then a residual $c \in$ H is uniquely determined and denoted by b: a.

Definition 1.8. Let (H, \leq) be an ordered commutative semigroup(monoid). If the order \leq on H is a partial order then (H, \leq) is called a lattice-ordered commutative semigroup(monoid).

Example 1.9. Every lattice (H, \leq) is a lattice-ordered commutative semigroup, by letting $* = \wedge$. Clearly a bounded lattice is a lattice-ordered commutative monoid in this way.

Through this paper suprimum and infimum over the empty set ϕ are taken to be 0 and 1; respectively.

2 Solutions of $A * X \le b$

If R is a residuated semigroup, then for all $a, b \in R$, there exists $c \in R$ such that

$$a * x \le b \Leftrightarrow x \le c \quad \forall x \in R.$$

This result can be extended to matrix inequalities. Let $A = (a_{ij})_{m \times n}$, $X = (x_j)_{n \times 1}$, $b = (b_i)_{m \times 1}$, be matrices over R, i.e. $a_{ij}, x_j, b_i \in R$, for i = 1, 2, ..., mand j = 1, 2, ..., n. Define

$$A * X = ((\bigvee_{j=1}^{m} a_{ij} * x_j)_i)_{m \times 1}.$$
 (1)

For the following theorem see Proposition 10.7 of [5].

Theorem 2.1. Let R be a residuated, lattice-ordered commutative monoid. Let A and B be $m \times m$ and $m \times r$ matrices over R; respectively. Let C as

$$(C)_{jk} = inf\{b_{ik} : a_{ij} | i = 1, 2, ..., m\}.$$

Then for all $X \in M_{n \times r}(R)$, we have:

 $A * X \le B \Leftrightarrow X \le C \qquad (2)$

where A * X is defined in (1). Hence B: A = C.

Corollary 2.2. Let (R, \leq) be a bounded chain, $* = \wedge$ and A, b be $m \times n$ and $m \times 1$ matrices over R; respectively. Then the system $A * X \leq b$ is consistent and the greatest solution of this system is X_{gr} such that the j - th component of X_{gr} is $x_j = \bigwedge \{b_i | b_i < a_{ij}\}$. Moreover, all of the solutions of the system $A * X \leq b$ are between 0 and X_{gr} , where 0 is the zero matrix for which all of its elements are the least element of R.

Proof: Since R is a bounded chain, as in Remark 1.2(iii), we have:

$$(b:A)_{j} = \inf\{b_{i}: a_{ij} | i = 1, 2, ..., m\}$$
$$= \inf\{b_{i} | b_{i} < a_{ij}\},$$

where infimum over empty set is taken 1. Clearly by (1) b : A is the greatest solution. \Box

Example 2.3 [3]. Let R = [0, 1] and $* = \wedge$. Consider the fuzzy linear system $A * X \leq b$, where

$$A = \left(\begin{array}{ccccccc} 0.3 & 0.9 & 0.9 & 0.4 & 0.2 \\ 0.7 & 0 & 0.9 & 0.4 & 0.7 \\ 0.6 & 0.1 & 0 & 0.8 & 0.5 \\ 0.8 & 0.7 & 0.4 & 0.2 & 0.7 \\ 0.4 & 0.1 & 0.2 & 0.5 & 0.1 \end{array}\right),$$

and

$$b = (0.9, 0.9, 0.7, 0.7, 0.5)',$$

where ' is the transpose operation.

By Corollary 2.2 we have :

$$x_1 = inf\{0.7\} = 0.7$$

 $x_2 = inf\phi = 1$
 $x_3 = inf\phi = 1$
 $x_4 = inf\{0.7\} = 0.7$
 $x_5 = inf\phi = 1$.
So,

$$X_{gr} = (0.7, 1, 1, 0.7, 1)'.$$

Remark 2.4. Note that the fuzzy linear system in Example 2.3 is solved by a different approach in [3].

Corollary 2.5. Let X be an arbitrary set. Consider the Boolean lattice

 $(P(X), \subseteq), * = \land$ and $\lor = \bigcup$. Let A and b be $m \times n$ and $m \times 1$ matrices over P(X); respectively. Then the system $A * X \leq b$ is consistent and the greatest solution of system is X_{gr} such that the j - th component of X_{gr} is $x_j = \bigcap_{i=1}^m (b_i \cup a_{ij}^c)$.

Proof: It follows from Theorem 2.1 and Remark 1.2(ii).

Example 2.6. Let R = P(X), where X is the chain of non-negative real numbers $R^{\geq 0}$. Consider the system $A * X \leq b$ as follows :

$$\begin{cases} [0,2] \cap x_1 & \subseteq & [4,6] \\ [1,2] \cap x_1 & \cup & [1,3] \cap x_2 & \subseteq & [8,10] \\ & & & [0,3] \cap x_2 & \subseteq & [2,6], \end{cases}$$

where $* = \wedge$. By using Corollary 2.5, we have:

 $x_1 = (2, +\infty)$, $x_2 = (3, +\infty)$. Hence

 $X_{gr} = ((2, +\infty), (3, +\infty))'.$

3 Optimization problem

Theorem 3.1. Let R be a lattice-ordered commutative monoid, A, X, b, C be $m \times n$, $n \times 1, m \times 1, 1 \times n$, matrices over R; respectively. The optimal solution of optimization problem $max\{Z = C * X | A * X \le b\}$, where * is define in (1), is $X_{gr} = b : A$, which is given in Theorem 2.1.

Example 3.2. Consider the optimization problem $max\{Z = C * X | A * X \leq b\}$, where A, b be as in Example 2.3, and C = (0.4, 0.5, 0.2, 0, 0.8). Then $X_{gr} = (0.7, 1, 1, 0.7, 1)'$ is the optimal solution and $Z^* = 0.8$.

Example 3.3. Consider the optimization problem $max\{Z = C * X | A * X \le b\}$, where A, b be as in Example 2.6, and C =([5,7], [4,8]). Then $X_{gr} = ((2, +\infty), (3, +\infty))'$ is the optimal solution and $Z^* = [4,8]$. **Remark 3.4.** In another paper we will discuss the solution of the linear systems $A * X \ge b$ and A * X = b.

References

- M. Hosseinyazdi, A. Hassankhani, M. Mashinchi, A characterization of finite pseudo-Boolean lattices, submited.
- [2] G. Gratzer, General lattice theory, Academic Press, New York San Francisco, 1978.
- [3] K. Peeva, Fuzzy linear systems, Fuzzy Set and Systems 49 (1992) 339-355, North-Holland.
- [4] H. T. Nguyen, E. A. Walker, A first course in fuzzy logic, 2nd ed. Chapman Hall/CRC, Boca Raton, London, New York, 1999.
- [5] U. Zimmermann, Linear and combinatorial optimization in ordered algebraic structures, North-Holland Publishing Company, Amesterdam, 1981.