Concurrency on a Data Structure with Buckets
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Abstract : In this paper we present a concurrent extension of the insertion algorithm used in the data structure of [2] which is a data structure having buckets instead of leaves. 
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1 Introduction 

Since the introduction of the B – tree in [1] , DBMS designers adopted it as the principal data structure for the storage of large amounts of data in a database . The B – tree has nodes and each node occupies a page of the secondary storage . Each node contains at least k+1 and at most 2k+1 keys pointing to nodes of the next level . The last level points to nodes which are called leaves . All the leaves have the same height . There is also one root . A generalization of the above schema is the (a,b) tree . A B-tree is a (k+1,2k+1) tree .  


As soon as the B-trees were introduced, researchers tried to make them support concurrent executions of their basic operations. These operations include SEARCH(x) , INSERT(x) , DELETE(x) . SEARCH(x) outputs a Boolean YES / NO value wherever the data structure contains the value x , INSERT(x) correctly inserts value x in the data structure and DELETE(x) correctly removes a value x form the data structure . Their initial programming is inadequate for concurrent environment because it violates certain correctness requirements, which can be coded under the terms of atomicity and serializability. Atomicity demands that any command of the program is performed as an atomic , uninterruptible step and serializability demands that the result of a concurrent execution of a set of operations (called “schedule”) , is the same with a serial execution of the operations in the schedule . Based on the above requirements, researchers tried to find efficient concurrent algorithms using the concept of lock . A process holds a lock in a part of the memory . The process holding the lock is granted exclusive access / modification rights in that particular memory area . Also many researchers introduced variants of the data structure they were working . This lead to the introduction of the famous link-technique in [3] . According to this technique the nodes in the same level of a rooted structure form a linked list with link pointers pointing to their siblings . This caused a very important  increase in the efficiency of concurrent access in the B – tree . We refer the reader to other important results in concurrent techniques .


The applications of these techniques is possible in data structures that not only resemble an (a,b) tree (or any other data structure with logical elements with a constant amount of memory assigned to each one of them, i.e. “nodes”), but in any other way to store information in memory. An example is a data structure organized with the bucketing technique as in [2]. This data structure contains a logical element (named “bucket”) which is not assigned a fixed amount of memory for its representation. Indeed a bucket is of size logn which is not a bounded function of n . The definition of the data structure also contains integrity constraints that depend on the number of elements the data structure holds  such as the rebuilding technique . 


For all these reasons the development of algorithmic techniques for concurrent access for this kind of data structures is an important problem. In this paper we give a concurrent version of the insert used in [2] . We prove that our algorithm is correct . We also conjecture that in the case of deletion we cannot do better than a serial execution of processes since we need an accurate knowledge of the number of elements of the data structure. 

2 Insert 

We will skip the parts that refer to the proof of correctness of the original INSERT(x) algorithm in [2] . Here we will give the concurrent insert . 


The original insert operated in a (a,b) – tree with buckets instead of leaves . The buckets could grow at the size of 2*logn and the tree could turn itself in a (a , 2b) tree (because of the  postponement of  splitting of nodes) . Here we will use a linked variant of the above data structure . The (a,b) – tree will have its nodes in the same level linked together in a linked list . So each node will be additionally equipped with a link pointer pointing to its right sibling . The buckets have a back pointer pointing to the node where the previous update stopped . The insert algorithm has the following steps 

1. Insert key in to the appropriate bucket . Let this bucket be B and the back pointer rB pointing to a node v . (initially the immediate father) 

2. If node v is big (i.e. has more than b keys) then split v in to two small nodes 

3. If node v  is the root of the tree then split B in to two halves and let the r-pointer of both new buckets point to their common father . Otherwise set rB (father(v)  . 

 Fleischer showed that the above procedure will never diverge and will produce nodes of a maximum size of 2b keys . Now we turn this algorithm in to a concurrent one . 


First we must lock the bucket that we are about to insert the key x . So each bucket will be assigned a write-lock so that processes can have access to the lock. After that we need to test the size of node v atomically , in order to ensure atomicity . This can be done with a write lock on node v . Now the process has absolute knowledge of the size of v and can safely split v if needed. In order to use the data structure more efficiently we use the link technique for the "upper" part of the data structure (not the bucket part). Under this assumption each node in the (a,b) - tree is equipped with an extra link pointer . The splitting of the node is done exactly like [3]. That is we create a new node, we transfer the maximum keys and place a link pointer to the old node while the new node points to the old right brother. We also need to update the father of the node or create new root. The details of the first case are shown in [3] when splitting might propagate further up the tree. As it regards the root we can lock the root explicitly and then split the tree in two halves and create a new root with exclusive lock in the root and its new brother so that no other split may be possible during the update. Also breaking the bucket will be done in exactly the same way as it is done in the intermediate nodes.

3   Search

Under the operations of concurrent inserts , searches need to be reprogrammed to run concurrently with inserts . The only thing that we need is to add in the programming the case of following a link pointer. So searches will be like the searches in [3], following link pointers if necessary. The case where a search reaches a node and has to follow the link pointer arises when a search is slower than an insert that splits a node. From the time it chooses the right node, until this node is actually read, this node might have been split and some keys are now at the right. A link pointer provides the means to continue searching without backtracking. 

4   Proof of Correctness 

Each schedule produced by the above programs is deadlock free . That is correct because are always placed in an acyclic order (bottom - up). This violates the principle of circularity in resource allocation and request as described in Coffman’s paper. The schedule is also serialisable. This is true because any change in the tree, since we only have inserts and searches, is equivalent to any serial schedule of the above processes since the change in the keys will be the same no matter the ordering of the inserts (with searches distributed accordingly among inserts), because we do not have removal of information from the data structure, only insertions.

5   Conclusions 

In this paper we provided concurrent operations of the kind SEARCH(x) and INSERT(x) in the data structure of  [2] . We proved that our programs will run correctly. The data structure of [2] now supports concurrent searches and insertions and this could lead to more speed up in parallel environments. The purpose of selecting this data structure is because of its different organization from balanced trees. It uses buckets and it is very useful in updating operations where most of updates are inserts since it has the ability of lazy-splitting. It is better than a B-link tree because splits are not so frequent. The approach here is novel since it demonstrates the applicability of known techniques used in the design of concurrent algorithms on B-trees, (a,b) trees , binary search trees etc, to also other kinds of data  structures (such as finger trees). 

We also argue that the introduction of concurrent deletions will do no better than a serial schedule since we need the global rebuilding technique and this is something that depends on the knowledge of the number of keys in the tree, which is global. We do not yet have a formal way of proving this and it is an interesting problem to formally prove (or refute) such a conjecture . 
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