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Abstract: A new method of estimating the most important cryptographic measures of the key generators and of 
the unconditionally secure key agreement protocols is presented. The aim of this article is to give a Bayesian 
estimation of a general class of entropies that includes Shannon entropy and Rényi entropy of order 2, which are 
cryptographic measures for the key generator module and for the key agreement protocol, respectively. It is also 
given a numerical simulation where the Bayesian estimate is computed using binary codification of the source. 
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1  Introduction 
The main problem in cryptography is to give criteria 
to make a pertinent comparison of cipher systems. 
The security of a cipher system must include the 
security of the algorithm, the security of the key 
generator and management module [1] and the 
security of the cryptographic key agreement protocol 
[2,3,4].  
     In this paper we give a new method of estimating 
the most important cryptographic measures of the 
key generators and of the unconditionally secure key 
agreement protocols. These cryptographic measures 
are the Shannon entropy, for the key generator 
module, and Rényi entropy of order α, for the key 
agreement protocol. It is known that Shannon 
entropy is a limiting case (α → 1) for the Rényi 
entropy [5]. For this reason we focus on an estimating 
method of Rényi entropy. This method will be the 
Bayesian one [6] which is based on combining the 
prior information (π(θ)) and the sample information 
(x) into what is called the posterior distribution of 
θ∈Θ given x. The posterior distribution of θ given x 
(or posterior for short) will be denoted π(θ | x), and, 
as the notation indicates, is defined to be the 
conditional distribution of θ given the sample 
observation x.  The probability density function of the 
random variable X in the hypotheses that the true 
state of the parameter is θ, will be denoted f(x | θ).     
The density of X is given by 
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and using Bayes formula we get the posterior 
distribution  
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In general f(x) and π(θ | x) are hard to compute and 
for this reason we must estimate them using 
computational techniques such as numerical 
integration, Monte Carlo methods or analytic 
approximation. Bayesian theory is frequently 
concerned with choosing π so as to reduce the 
difficulty of the calculation, while retaining essential 
or desirable prior features. 
     In this paper we compute Bayesian estimates for 
the Rényi entropy of order α  and we show that the 
Bayesian estimate of Shannon entropy is obtained as 
a limiting case α→1, using as distribution on the 
frequency space the multinomial distribution and as a 
priori the Dirichlet distribution, because this 
distribution is conjugate for the multinomial 
distribution family. Our work is a generalization of a 
result obtained by Yuan et. al. [7]. In general an 
information source can be approximated by its 
L-order approximation (the cardinality of the symbol 
space of the source output is L) [8] and after we study 
the asymptotic behavior of the estimates we show 
that the approximation method is asymptotic 
regarding the codification source parameter. These 
asymptotic results are generalizations of the results 
obtained by Maurer in [1] and can be used to estimate 
the effective size of a cipher system. 
 



2   Information-theoretic background 
One of the fundamental problems in cryptography is 
the generation of a shared secret key by two parties, 
A and B, not sharing a secret key initially over an 
insecure channel which is under the control of E. The 
general information-theoretic model proposed in [9] 
is that in which A and B are connected only by a 
public channel and E can eavesdrop the 
communication. The problem can be solved with 
public key cryptography where we assume that the 
power of computing of E is limited. Another 
possibility is to develop techniques that avoid the 
above assumption. The motivation for is two-fold: 
First, one avoids having to worry about the generality 
of a particular computational model, which is of 
some concern in view of the potential realization of 
quantum computers [10]. Secondly, and more 
importantly, no strong rigorous results on the 
difficulty of breaking a cryptosystem have been 
proved, and this problem continues to be among the 
most difficult ones in complexity theory. 

The general protocol takes place in a scenario 
where A, B and E know the correlated random 
variables X, Y, Z, respectively, which are distributed 
according to some joint probability distribution that 
may be under partial control of E (like the case of 
quantum cryptography where E’s measurement 
influences the outcome of the random experiment) 
[11].  

We can see that the problem can be solved in the 
following phases:  

1. A and B must detect any modification or 
insertion of messages. 

2. A and B establish a secret communication 
key. 

The first phase is called authentication step. This 
can be done with classical statistical tests [12], [13]. 

The second phase consists of three steps: 
a) Advantage distillation. The purpose of this 

step is to create a random variable W about which 
both A and B have more information than E. 
Advantage distillation is only needed when W is not 
immediately available from X and Y. A and B create 
W by exchanging messages, summarized as a random 
variable C, over a public channel. A discussion on 
these facts can be found in [14]. 

b) Information reconciliation. To agree on a 
string T with very high probability, A and B exchange 
redundant error-correction information U, such as a 
sequence of parity checks. After this phase, E is left 
with incomplete information about T, which consists 
of Z, C and U [4]. 

c) Privacy amplification. In the final phase, A 
and B agree publicly on a compression function G to 

distill from T a shorter string S about which E has 
only a negligible amount of information [9, 15, 16]. 
Therefore, S can be subsequently used as a secret key. 
In [15] and [16] Cachin proves the connection 
between smooth entropy, Rényi entropy and privacy 
amplification phase. In this paper we study the effect 
of side information U on the collision entropy (Rényi 
entropy of order 2) which is a measure of the security 
of the protocol. 

We assume that the reader is familiar with the 
notion of entropy and the basic concepts of 
information theory [12]. We repeat some 
fundamental definitions and introduce the notation. 
The Shannon entropy of a random variable X with 
probability distribution PX and alphabet X is defined 
as  
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and the conditional entropy of X conditioned on a 
random variable Y is 
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where H(X | Y = y) denotes the entropy computed 
from the conditional probability distribution PX|Y = y. 
In privacy amplification, a different and a 
non-standard entropy measure, collision entropy, is 
of central importance. Collision entropy is also 
known as Rényi entropy of order 2 [14]. 

Definition 1 [4]. Let X be a random variable with 
alphabet X and distribution PX. The collision 
probability Pc(X) of the random variable X is defined 
as the probability that X takes on the same value 
twice in two independent experiments, i.e.,  
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Definition 2 [4]. The collision entropy of the 

random variable X is defined as the negative 
logarithm of the collision probability of X, i.e.,  
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Remark: We see that collision entropy is Rényi 

entropy of order α = 2 which is defined as 
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In the limiting case α → 1 we get H(X) (Shannon 



entropy) and when α → ∞ we obtain the min-entropy 
of X, which is defined as 
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We also have the following inequalities,  
log2|X|  H(X)  H≥ ≥ 2(X)    ≥ ( )XH∞

and ( ) ( )0 H X H Xα βα β≤ < ⇒ ≥  with equality if 

and only if X is uniformly distributed over X when α 
= 0 or X is uniformly distributed over a subset of X 
when α > 0. 
      Definition 3 [4]. For an event ℇ the collision 
entropy of X conditioned on ℇ, Hc(X | ℇ), is defined 
naturally as the collision entropy of the conditional 
distribution PX|ℇ. The collision entropy conditioned 
on a random variable, Hc(X | Y), is defined as the 
expected value of the conditional collision entropy: 
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Equivalently Hc(X) can be expressed as Hc(X) = –log2 
E[PX(X)] where E[.] denotes the expected value. The 
notation EX[.] is sometimes used to state explicitly 
that the random experiment over which the 
expectation is taken is the random experiment 
underlying the random variable X. The Shannon 
entropy H(X) can be expressed similarly as H(X) = 
–E[log2PX(X)] = . From Jensen 
inequality we have H

2logXP P−∑
c(X) H(X) with the equality if 

and only if P
≤

X is the uniform distribution over X or 
over a subset of X. Similarly, we have H(X | Y) ≥ 
Hc(X | Y). We make the remark that collision entropy 
(also Shannon entropy) is positive. 

Now we present the concept of Shannon entropy 
and a method of estimation of it. Suppose that X is a 
discrete variable taking finite values x1, ..., xs, with 
finite probability distribution (p1, ..., ps) satisfying pi 
> 0, i = 1, ..., s, and p1 + ... + ps = 1. Then the Shannon 
entropy is defined as:  

 

∑
=

−=
s

i
ii ppH

1
ln                                 (7) 

 
If the true distribution of X is completely specified as 
assumed in some cases, then the entropy calculation 
does not pose a problem. But, in practical situations, 
we have very little knowledge about the distribution 
of X, or, alternatively, we only have some vague 
knowledge about the distribution. In such cases, the 

entropy calculation becomes a problem of statistical 
estimation. The method is straightforward, and is 
based on the record of the frequency ni of each 
symbol xi taken from n independent copies of X. By 

the theory of probability, the relative frequency 
n
ni  

is a good estimate of pi and therefore, a natural 
estimate of the entropy is 
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In [17] Pardo and Menendez generalized the concept 
of entropy and introduced statistical tests for (h, 
ϕ)-entropies. In [1] Maurer gives a universal 
statistical test of randomness and an estimation of the 
Shannon entropy of a binary source. This test 
measures also the effective size of the key for a 
cipher system that uses the source like key 
generators. Morales et. al. [18] developed a new 
statistical test for differential entropy. The aim of our 
paper is to give a Bayesian estimation of a general 
class of entropies that includes Shannon entropy and 
Rényi entropy of order 2 using a-priori truncated 
distribution. Yuan et. al. in [7] investigated Bayesian 
estimation of Shannon entropy using Dirichlet 
a-priori distribution. In section 3 we present the 
results obtained by Bayesian estimation of Rényi 
entropy. Rényi entropy of order 2 is a measure of the 
protocol’s security presented in the above section. 
Shalaby in [19] presented Bayesian inference for 
truncated exponential distributions. In [20] and [21] 
Morales et. al. presented some of the applications of 
ϕ-entropies for comparison of experiments. A similar 
work on comparison of experiments is done in [22], 
by Pardo et. al., where they considered generalized 
entropy measures. Therefore, it is very interesting to 
study the Bayesian estimation of such entropies that 
include Shannon entropy and collision entropy. The 
sample behavior of entropy parameters is done in 
[23]. In section 3 of this paper we present the concept 
of a priori conjugated distributions and we compute 
the Bayesian estimate. We will give some numerical 
examples and conclusions in section 4. 
 
 
3   Bayesian estimation 
Bayesian approach [6] is based on combining the 
prior information regarding θ, given by π(θ), and the 
sample information, given by X, into what is called 
the posterior distribution of θ∈Θ given x. The 
posterior distribution of θ given x (or posterior for 
short) will be denoted π(θ | x), and, as the notation 



indicates, is defined to be the conditional distribution 
of θ given the sample observation x.  The probability 
density function of the random variable X in the 
hypotheses that the true state of the parameter is θ, is 
denoted f(x | θ). The density of X is 
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Using Bayes formula we get  
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The role of π(θ | x) is indicated by the name 
“posterior distribution”. Just as the prior distribution 
(or prior for short) reflects beliefs about θ prior to 
experimentation, so π(θ | x) reflects the updated 
beliefs about θ  posterior to (after) observing the 
sample x. In general f(x) and π(θ | x) are hard to 
compute. The distributions for which π(θ | x) is easy 
to compute are the so called a priori conjugate 
distributions or conjugate priors. 

Definition 4 [6]. We say that a class P of prior 
distributions is a conjugate family for the family of 
density functions F = {f(x | θ) | θ∈Θ} if for every 
prior distribution π ∈ P and every f ∈ F  we have  π(θ 
| x) ∈ P. 

Suppose we have frequency data (n1, ..., ns) 
generated from a multinomial distribution (p1, ..., ps). 
Therefore, the likelihood would be 
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where n = n1 + ... + ns. A commonly used prior for this 
model is the Dirichlet distribution D(α1, …, αs) , αi > 
0 . 

If we have a prior guess at the unknown 

distribution, say, it is (π1, …, πs) satisfying 
1

1
s

i
i

π
=

=∑  

and πi > 0, then, the prior D(απ1, …, απs) with α > 0 
is recommended because the prior means of each 
pi∈πi, which coincides with our guess. The parameter 
α is a measure of our confidence about the guess, 
where the larger α implies more concentration of the 
prior around (π1, …, πs). Another interpretation of α 
is that it determines the average discrepancy between 
(p1,…, ps) and (π1, …, πs). If we use the square 
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decreasing function of α. When we do not have any 
prior knowledge, the uniform prior is the best choice 
which is a special case of Dirichlet distribution 
namely, D(1, ..., 1). The Dirichlet distribution is 
conjugate for the likelihood given above, that is, if 
the prior is Dirichlet, the posterior is also Dirichlet. 
More specifically, if the prior is D(α1, …, αs) , then, 
after the frequency data (n1, ..., ns) is incorporated, the 
posterior is D(α1 + n1, …, αs + ns). Let us denote by 
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loss the Bayesian estimation of , denoted by 

, is nothing but the integral of the γ-probability 
function with respect to the posterior. 

)(XPγ
γ
nE

If we denote αi = απi, with , then by 

straightforward calculations we have for s 2 : 
1

1
s

i
i

π
=

=∑
≥

 

1

( )( )
( ) (

s
i

n
i ii

nnE
n n

γ

)
απ γα

απ α γ=

Γ + +Γ +
= −

Γ + Γ + +∑       (11) 

 
Remarks: a) The estimation of  
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and for γ → 1 we obtain after using L' Hospital’s rule 
the results obtained by Yuan et. al. in [7]. 

b) For γ = 2 we obtain the Bayesian estimation 
of collision entropy which is a measure of protocol 
security in key agreement protocols over an insecure 
channel.  
 
 
4 Numerical simulation and conclusion 
We have generated 1000 random bits for which we 
recorded n1 = 510 and n2 = 490. The Shannon 
entropy, which is the limiting case γ → 1 of Rényi 
entropy, will be: H = ln 2 ≈  0.69314718. We get 
empirical estimate Hn = 0.69294716 and the 
Bayesian estimate = 0.69229474. The later will 
be computed by the formula 
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Obviously, these estimates are consistent. When 
the sample size is quite large the Bayesian approach 
does not yield a result different from the empirical 
method. But in case of a small or moderate sample 
size, the Bayesian estimate does increase the 
accuracy provided that a plausible prior can be 
obtained. On the average both the Bayesian and the 
empirical methods tend to underestimate the true 
value, but the Bayesian estimate is more stable. 

In Figure 1 we present the results obtained by 
changing the codification of a binary symmetric 
random source (a source which emits 0 and 1 with the 
same probability 0.5). We can see that the Bayesian 
estimation of the Shannon entropy is done with the 
error of 5*10-3 if we use binary codification (s = 2 ) in 
the computation, 2.4*10-3  if we use hex codification 
(s = 4), 13*10-4 if we use byte codification (s = 8 ), 
8*10-4 if we use 15-bit codification (s = 15) and so 
on. 

A similar behavior has the Bayesian estimate 
depending on the sample size. The Bayesian estimate 
is computed using binary codification of the source. 
We can see that bigger sample size increases the 
accuracy of the estimation. There is a strong 
connection between the Shannon entropy and the 
effective size of a cipher system (see for details [1]). 
Thus the Bayesian estimation can be used to derive 
the effective size of a cipher system which has as key 
generator the investigated random source. 

 
Figure 1 
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