Structure-activity relationships for mosquito repellent aminoamides using the hierarchical QSAR method based on calculated molecular descriptors
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Abstract: - In the quest to find alternatives for the most popular topical repellant, N,N- Diethyl-3-methylbenzamide (DEET), development of QSAR models plays a very important role because these models can be used to tailor the similarity space and select compounds from large data sets in the identification of leads. Mosquito repellency data of carboxamides for Aedes aegypti and Anopheles quadrimaculatus are modeled by the Hierarchical Quantitative Structure- Activity Relationship (HiQSAR) technique using topostructural, topochemical, geometrical and quantum mechanical parameters. Three types of multiple regression methods namely, ridge regression, principle components regression, and partial least square regression models were applied. For Aedes aegypti data, in all three regression methods the topostructural parameters are found to correlate well with the time of protection, and there was no improvement in the model quality on adding topochemical, geometrical and quantum chemical parameters.  This indicates that the size of the repellent is the primary factor that governs the repellency of the carboxamides. However, in the case of the Anopheles quadrimaculatus the chemical nature, presence of a double bond, also seems to have a role.  HiQSAR is able to bring out a possible difference in the mode or mechanism of action of the repellent amides for the two mosquito species.
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1  Introduction
The mosquito is an important vector in spreading various diseases such as malaria, dengue, yellow fever, and the West Nile virus, to name just a few.  Nearly 300-500 million people are infected worldwide with mosquito-borne diseases and 1.5 to 2.0 millions die each year.  So, there is a pressing need for the design of novel chemical agents effective in repelling mosquitoes from their hosts.


Quantitative structure-activity relationship (QSAR) modeling is a powerful method for rationalizing differences in biological properties arising out of structural variation.  High quality QSARs can also be used in predicting potential biological properties of molecules not tested or even not synthesized as long as such structures belong to the class from which the QSAR has been formulated.


Amides constitute an important class of mosquito repellents.  The most popular repellent today, DEET, is an amide.  So, there have been attempts to synthesize and test various amide derivatives in an attempt to find compounds better than DEET.  McGovern et al [1] tested a set of 30 amides against Aedes aegypti and Anopheles quadrimaculatus mosquitoes. The 30 compounds are cyclic carboxamides of secondary amines. While diethyl, din-propyl, din-butyl or a ring system were the various substituents on the nitrogen atom, the acyl group was only cyclic. There were five series of compounds and the structures of these amides are given in Table 1.  Very few of these compounds have extensive data available for the development of QSARs.  Therefore, in this paper we have formulated QSARs for the set of 30 amides using calculated chemodescriptors and our hierarchical QSAR methodology [2].
Table 1. Mosquito repellency data and the 

structures of the amides
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	5th bite
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	C2H5
	C2H5
	4
	4
	1
	1

	2
	
	C3H7
	C3H7
	15
	15
	8
	8

	3
	
	C4H9
	C4H9
	0
	8
	0
	0

	4
	
	-(CH2)4-
	30
	38
	38
	79

	5
	
	-(CH2)5-
	0
	38
	30
	30

	6
	
	-(CH2)6-
	106
	113
	22
	38

	7
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	C2H5
	C2H5
	1
	1
	1
	1

	8
	
	C3H7
	C3H7
	15
	15
	15
	15

	9
	
	C4H9
	C4H9
	0
	30
	0
	1

	10
	
	-(CH2)4-
	28
	28
	70
	94

	11
	
	-(CH2)5-
	21
	28
	28
	48

	12
	
	-(CH2)6-
	64
	87
	70
	70

	13
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	C2H5
	C2H5
	8
	8
	1
	1

	14
	
	C3H7
	C3H7
	15
	15
	1
	1

	15
	
	C4H9
	C4H9
	0
	0
	0
	0

	16
	
	-(CH2)4-
	21
	28
	28
	28

	17
	
	-(CH2)5-
	21
	28
	13
	13

	18
	
	-(CH2)6-
	28
	28
	6
	6

	19
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	C2H5
	C2H5
	7
	7
	0
	0

	20
	
	C3H7
	C3H7
	27
	27
	1
	1

	21
	
	C4H9
	C4H9
	0
	0
	0
	0

	22
	
	-(CH2)4-
	27
	27
	1
	1

	23
	
	-(CH2)5-
	33
	41
	1
	1

	24
	
	-(CH2)6-
	27
	47
	1
	1

	25
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	C2H5
	C2H5
	1
	1
	8
	8

	26
	
	C3H7
	C3H7
	1
	35
	49
	49

	27
	
	C4H9
	C4H9
	0
	1
	0
	0

	28
	
	-(CH2)4-
	34
	55
	28
	28

	29
	
	-(CH2)5-
	70
	70
	70
	91

	30
	
	-(CH2)6-
	70
	128
	0
	111


 2.  Methods
2.1  Repellency data

Repellency data for two species of mosquitoes namely, Aedes aegypti and Anopheles quadrimaculatus, for the 30 amides reported by McGovern et al [1] are listed in Table 1. The test-chemical was applied at the rate of 3.3 g per 0.1 m2 cloth portion of a cotton stocking.  After 2 h, the treated stocking was placed over an untreated nylon stocking covering the arm of a human subject and exposed for 1 min in a cage containing about 1500 A. aegypti or A. quadrimaculatus mosquitoes that were 5 to 8 day old. The test exposures were repeated at 24 h and then at weekly intervals until 5 bites were received in 1 min. 
2.2 Calculation of molecular descriptors

Well over 300 molecular descriptors were calculated for the current study, all derived strictly from molecular structure, using software programs including POLLY v2.3 [3], Triplet [4], and Molconn-Z v3.5 [5]. The topological descriptors included a large set of connectivity indices, triplet indices, electrotopological indices, hydrogen bonding indices, and information theoretic and neighborhood complexity indices. The 3-dimensional aspects of molecular structure were encoded with a set of Kappa shape indices. The reader may refer to the monograph edited by Devillers and Balaban [6] for detailed accounts on each of these topological indices and their importance in QSAR modeling. The calculation of semiempirical quantum chemistry parameters such as EHOMO, ELUMO, EHOMO-ELUMO, EHOMO-1, ELUMO-1, heat of formation, total electronic energy, and dipole moment, were calculated after optimizing the molecular geometry with the AM1 Hamiltonian. MOPAC routines were performed using the Chem3D Ultra 8.0  [7] interface. The computed descriptors were classified into four categories namely,

1. Topostructural Indices (TS)

2. Topochemical Indices (TC)

3. 3D or geometrical parameters (3D)

4. Quantum chemical descriptors (QC)

Topostructural descriptors do not differentiate the nature of bonds and the atom types. The metrics of the molecules are also not considered for computation of these indices. Topochemical indices consider the types of atoms and their valencies, however, only the 3-D parameters take into account the geometry of the molecules. Electronic terms which are still missing in all these three types are encoded in the quantum chemical descriptors. Thus, the complexity as well as the time for computation of the indices increase in the order TS < TC< 3D < QC.

2.3  Statistical Analysis

Prior to performing regression analysis, the variables were scaled by the natural logarithm as their values differed by several orders of magnitude. The CORR procedure of the SAS statistical package [8] was used to identify pairs of perfected correlated descriptors (R = 1), and only one descriptor of each such pair was retained and used in the analysis.  Ridge regression (RR) [9], principal components regression (PCR) [10], and partial least squares (PLS) regression [11] are used in our study to handle the large pool of descriptors. These methods are appropriate when molecular descriptors (the independent variables) are inter-correlated and when the number of descriptors is much greater than the number of observations—a common problem faced by modelers. In addition, each of these methods utilizes the complete set of independent variables as opposed to subset regression or stepwise analysis wherein it is possible that important parameters may be discarded.
In a study such as this, where the number of independent variables is greater than the number of observations, cross- validated R2 (q2) is preferred to standard regression measures such as R2 because q2 clearly brings out over-fitting by a decrease in its value. In this paper we have used leave-one-out cross-validation, which is obtained by removing each compound in turn from the data set and fitting the regression to the remaining n-1 compounds, and the PRESS statistic, representing the predictive residuals sum of squares, is also used as a measure of model predictability.  

2.4  Hierarchical QSAR (HiQSAR)
It has already been mentioned that the complexity of the four classes of parameters used in the present study increases from TS to QC.  Basak et al [2] developed a methodology known as Hierarchical Quantitative Structure-Activity Relationship (HiQSAR) modeling wherein the descriptors are used in increasing order (hierarchy) of their complexity.  The realtive importance of a class of descriptors is brought out by increase in model quality on inclusion of that class of descriptors.  This approach has been used by Basak and coworkers to model several partition coefficients [12-14] and toxicity of halocarbons [15,16]. 
3  Results and Discussion

Results of the statistical analyses are given in Table 2. In general, ridge regression (RR) was found to perform better than the other two methods viz. PCR and PLS. However, in a few cases (see Table 2), models developed with PLS were found to perform equally well or even slightly better.  In the case of A. aegypti, the QSAR models for protection time for 1st bite were superior to that for time for 5 bites and, in general, the predictability of the regression models for A. aegypti was much higher than that for A. quadrimaculatus. 
On the application of the hierarchical modeling approach for A. aegypti data, the models that used topostructural (TS) parameters alone was found to be the best, with the highest q2 and the lowest PRESS.  Inclusion of other classes of descriptors did not improve the predictability of the model.  This indicates that the shape and size are the important parameters responsible for the repellency of the amides considered in this study.  Though TC descriptors when used alone gave the second best model, their inclusion with the TS descriptors did not improve the predictability. This suggests that the repellency of these amides is independent of the structural feature(s) that differentiate the series of compounds.  In the present case, the presence/absence of C=C, (unsaturation) is the only structural feature that could bring a difference in the TS and TC values of the members.  Hence, mode of action or the mechanism of action in the case of A. aegypti did not seem to be affected by the unsaturation in the cyclohexyl group of the acyl moiety. 
In contrast to the models for A. aegypti, the HiQSAR modeling of A. quadrimaculatus data indicated that TS+TC and TS+TC+3D models perform slightly better (higher predictability) than the TS model. This trend is more distinctly observable in the QSAR models for time for 5 bites than in those for the time for 1st  bite.  The difference between the HiQSAR models for the two mosquito species indicates that the mechanism or the modes of binding responsible for the repellency of amides in the two species of mosquitoes might be different. The presence of unsaturation seems to affect the repellency of amides towards A. quadrimaculatus while it was inferred to play no significant role in the other species, Aedes aegypti.  The better predictability of models for time for 5 bites compared to that for time for 1st bite in the case of A. quadrimaculatus repellency data is just the opposite of the trend observed in the A. aegypti data.  
The protection times for 5 bites by A. aegypti were generally greater for several of the test-chemicals.  Consequently, the effect of variations in the control variables such as temperature, humidity, etc., must be more pronounced on these test data. Moreover, after some time the tests were repeated only once in 7 days instead of once in 25 h.  Hence, protection time for 5 bites collected for A. aegypti might be skewed when the numbers of days are very large.  This appears to be one possible reason for the reversal in the situation when we go from QSAR models for A. aegypti data to those for A. quadrimaculatus data.  
4 Conclusion
The Aedes aegypti repellency data were modeled better than those of Anopheles quadrimaculatus.  In the case of repellency towards Aedes aegypti, only size and shape of the amide molecules seem to play an important role, as indicated by the fact that the best regression model utilized the topostructural (TS) parameters alone.  On the other hand, repellency of these amides towards Anopheles quadrimaculatus appears to depend not only on shape and size but also on the chemical nature, namely the presence of a double bond. This was indicated by the improvement of predictability of the regression models on adding topochemical descriptors (TC) to topostructural descriptors. From this observation, one could infer that there might be a difference in the mode or mechanism of action of the amides with respect to repellency of the two species of mosquitoes. The study thus brought out the effectiveness of the HiQSAR approach as opposed to conventional QSAR.
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Table 2.  Results of regression analyses
	Independent
Variables 
	q2
	PRESS

	
	RR
	PCR
	PLS
	RR
	PCR
	PLS

	1.  Mosquito class A. aegypti
Time elapsed before 1st bite

	TS
	0.857
	0.635
	0.856
	9.201
	23.58
	9.277

	TS+TC
	0.823
	0.556
	0.852
	11.43
	28.55
	9.546

	TS+TC+3D
	0.822
	0.558
	0.852
	11.46
	28.53
	9.567

	TS+TC+3D+QC
	0.813
	0.581
	0.817
	12.07
	27.06
	11.81

	TS
	0.857
	0.635
	0.856
	9.201
	23.58
	9.277

	TC
	0.816
	0.518
	0.824
	11.89
	31.09
	11.38

	3D
	0.289
	0.279
	0.081
	45.87
	46.55
	59.34

	QC
	-0.070
	-0.260
	-0.070
	69.07
	81.30
	69.07

	Time elapsed before 5th bite

	TS
	0.590
	0.330
	0.429
	21.56
	35.25
	30.08  

	TS+TC
	0.459
	0.283
	0.459
	28.45
	37.74
	28.46

	TS+TC+3D
	0.458
	0.283
	0.458
	28.51
	37.73
	28.51

	TS+TC+3D+QC
	0.437
	0.279
	0.279
	29.62
	37.93
	37.96

	TS
	0.590
	0.330
	0.429
	21.56
	35.25
	30.08  

	TC
	0.433
	0.235
	0.303
	29.85
	40.25
	36.67

	3D
	0.170
	0.037
	0.117
	43.70
	50.67
	46.47

	QC
	-0.105
	-0.264
	-0.255
	58.19
	66.54
	66.07

	2.  Mosquito class A. quadrimaculatus
Time elapsed before 1st bite

	TS
	0.400
	0.242
	0.067
	43.45
	54.88
	67.56

	TS+TC
	0.401
	0.290
	0.176
	43.35
	51.44
	59.68

	TS+TC+3D
	0.401
	0.290
	0.176
	43.40
	51.43
	59.67

	TS+TC+3D+QC
	0.335
	0.281
	0.257
	48.16
	52.06
	53.81

	TS
	0.400
	0.242
	0.067
	43.45
	54.88
	67.56

	TC
	0.337
	0.294
	0.121
	48.04
	51.10
	63.64

	3D
	0.313
	0.260
	0.136
	49.78  
	53.60
	62.55

	QC
	0.046
	-0.377
	-0.012
	69.05
	99.69
	73.31

	Time elapsed before 5th bite

	TS
	0.575
	0.575
	0.500
	35.39
	43.31
	41.56

	TS+TC
	0.656
	0.513
	0.543
	28.63
	40.50
	38.04

	TS+TC+3D
	0.655
	0.513
	0.542
	28.68
	40.53
	38.07

	TS+TC+3D+QC
	0.639
	0.509
	0.529
	30.04
	40.87
	39.14

	TS
	0.575
	0.575
	0.500
	35.39
	43.31
	41.56

	TC
	0.643
	0.529
	0.538
	29.73
	39.13
	38.45

	3D
	0.417
	0.459
	0.210
	48.50 
	45.18
	65.69

	QC
	0.180
	-0.053
	0.208
	68.19
	87.55
	65.87
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