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Abstract: - Quantitative structure-activity relationship (QSAR) models were developed for the prediction of bovine hoof membrane permeability in an effort to gain insight into the rate of penetration of antimycotics through the nail plate. Numerical descriptors based on chemical structure were calculated for a set of 14 drugs, mainly antimycotics.  The descriptors were then placed into one of three classes based on level of complexity and demand for computational resources. Models using the various classes of structural descriptors were developed using ridge regression, principal component regression, and partial least squares. Results indicate that permeability of antimycotics can be modeled based on structural descriptors alone, without the need for experimental data.  As such, predictions can be made about the permeability of hypothetical compounds of similar structure not yet synthesized.  However, additional data are required to allow for reliable modeling of human nail plate permeability.  
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1 Introduction

Onchomycosis is treated mainly with oral antifungal medication. However, due to the potential for severe systemic side effects, there is an interest in the alternative topical application of these drugs. The first step in evaluating the efficacy of this approach is determining the permeability of therapeutic chemicals through the nail.
     Our research team and collaborators have been involved in the development of quantitative structure-activity relationships (QSARs) of the efficacies of different classes of antimycobacterial drugs. Since experimental test data and physicochemical properties of the majority of candidate molecules are not usually available, our approach has been the development of predictive models based on algorithmically derived chemodescriptors which can be calculated directly from molecular structure without the input of any other experimental data. The efficacy (pharmacodynamics) of drugs is an important factor in selecting candidate chemicals for preclinical testing.  Another set of factors related to the effectiveness of drugs is the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties.  Therefore, in this paper we attempted to correlate the absorption patterns of a set of 14 drugs, mainly antimycotic agents, using our hierarchical QSAR (HiQSAR) approach from calculated chemodescriptors of these molecules. 
2   Materials and Methods
2.1 Compounds used in the study
Unfortunately, data with respect to the human nail plate are limited; therefore, permeability through bovine hoof membrane was studied. Permeability coefficients for nine antimycotics and five other drugs through the bovine hoof membrane were taken from the literature [1]. The structures of these compounds are provided in Fig. 1. 

2.2   Chemodescriptors

Computer software programs including POLLY v.2.3 [2], Triplet [3], and Molconn-Z v.3.5 [4] were used to calculate 369 chemodescriptors, including a large set of connectivity indices [5,6], information theoretic and neighborhood complexity indices [7,8], electrotopological state descriptors [9], descriptors of hydrogen bonding and polarity, as well as a small set of kappa shape indices [10]. A complete list of descriptors may be obtained from an earlier publication [11].
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Fig. 1.  Compounds used in the present study, antimycotics (1-9) and other drugs (10-14)
     The descriptors were partitioned into hierarchical classes based on level of complexity and demand for computational resources.  The topostructural (TS) indices are at the low end of the hierarchy, encoding information strictly on atom connectivity within a molecule, without taking any specific chemical information into account.  The topochemical (TC) indices, in addition to encoding information on atom connectivity, also encode chemical information such as atom and bond type.  Collectively, the TS and TC descriptors are known as topological indices.  The geometrical (3D) indices are more complex than the topological indices, encoding three-dimensional aspects of molecular structure.  In hierarchical QSAR, models are developed based on increasingly complex descriptor sets. In this way, we are able to determine whether the addition of the computer-intensive molecular descriptors results in significant model improvement or whether the simple, more quickly obtainable topological descriptors, alone, are sufficient for the development of high-quality predictive models.
2.3   Statistical analysis 
Prior to statistical analysis, descriptors with a constant value for all or nearly all of the chemicals were removed from the data set, as were any descriptors with undefined Triplet values, and one of each perfectly correlated descriptor pair (r = 1.0) as determined by the CORR procedure of the SAS statistical package [12].  A total of 248 descriptors were retained.  The descriptors were transformed by the natural logarithm as their values spanned several orders of magnitude.
     For comparative purposes, three distinct regression methodologies were used to develop the predictive models based on theoretical molecular descriptors. Ridge regression (RR) [13], principal components regression (PCR) [14], and partial least squares (PLS) [15,16] are all appropriate methods in situations where the number of descriptors is large with respect to the number of observations and when there is a high degree of intercorrelation among the descriptors.  Each of these regression methods utilizes the entire set of available descriptors, in contrast to subset regression wherein a small subset of descriptors is selected from an available pool for modeling and all others are discarded. 

      For the sake of brevity, we have reported the cross-validated R2 for each of the models rather than the models, themselves. The R2c.v. is obtained using the cross-validated sum of squares approach wherein each compound, in turn, is held out and the remaining n-1 compounds are used to determine the model coefficients which are then used to predict the activity value of the held-out compound.  Comparable to validating a model with a reserved test set, this method assesses the final model using test compounds that were not involved in the model fitting. As such, a model with a large R2c.v can be relied upon to provide an accurate prediction of future cases that are similar to those used to calibrate the model [17].  It is important to note the distinction between R2and R2c.v.  R2 tends to increase upon the addition of any descriptor, often leading to overly optimistic results which are not reliable.  On the other hand, R2c.v tends to decrease upon the addition of irrelevant descriptors and provides a reliable measure of model predictability.  
3 Results and Discussion

Results in Table 1 indicate that the easily calculable topological descriptors explain most of the variance in the permeability data.  There is significant improvement in model quality upon the addition of the TC to the TS descriptors, with an associated R2c.v. value of 0.816. The addition of three-dimensional descriptors, however, did not result in improved model quality. This is in line with our earlier observations on QSARs of physicochemical properties, e.g., vapor pressure [18,19], boiling point [20], etc., as well as biological properties, viz., mutagenicity [21-23]; pharmacokinetically important properties such as blood:air partition coefficient [24-26], tissue:air partition coefficient [11]; Ah receptor binding [27]; and estrogen receptor binding affinity of chemicals [28].  It is noteworthy that the data set correlated here is small; but larger data sets are not available in the published literature.  We will attempt to develop HiQSARs for the permeability of larger sets of antimycotic agents when they become available.
Table 1.  Regression results (N = 14)


Acknowledgements:
This is contribution number 378 from the Center for Water and the Environment of the Natural Resources Research Institute. Research was supported in part by Grant F49620-02-1-0138 from the United States Air Force. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government.
References:

[1]  D. Mertin and B. C. Lippold, In-vitro
      permeability of the human nail and of a keratin
      membrane from bovine hooves:  Prediction of 
      the penetration rate of antimycotics through the 
      nail plate and their efficacy, J. Pharm. 
      Pharmacol., Vol. 49, 1997, 866-872.

[2]  S. C. Basak, D. K. Harriss, and V. R. Magnuson,
       POLLY v.2.3, Copyright of the University of 
       Minnesota, 1988. 

[3]  P. A. Filip, T. S. Balaban, and A. T. Balaban, A 
       new approach for devising local graph
       invariants: Derived topological indices with low 
      degeneracy and good correlational ability, J. 
      Math. Chem., Vol. 1, 1987, 61-83.

[4]  Molconn-Z Version 3.5, Hall Associates 
      Consulting, Quincy, MA, 2000. 

[5]  M. Randic, On characterization of molecular 
       branching, J. Am. Chem. Soc., Vol. 97, 1975, 
       6609-6615.

[6]  L. B. Kier and L. H. Hall, Molecular 
      Connectivity in Structure-Activity Analysis, 
      Research Studies Press, Letchworth, 
      Hertfordshire, U.K., 1986.
[image: image2.emf]HO

N

H

CH

3

O

10.  Paracetamol

O H

3

C

H

N CH

3

O

11.  Phenacetin

N

N

N

N

O

H

3

C

O

CH

3

OH

OH

12.  Diprophylline

OH

O

2

N

H

N

O

Cl

Cl

OH

13.  Chloramphenicol

N

H

HO

N

H

OH

NH

I

I I

O O

OH HO

O

H

3

C

H HO

14.  Lopamidol

[7]  S. C. Basak, A. B. Roy, and J. J. Ghosh, Study 
      of the structure-function relationship of 
      pharmacological and toxicological agents using 
      information theory, (X. J. R. Avula, R. Bellman, 
      Y. L. Luke, and A. K. Rigler, Eds), 1979, 851-
      856. Rolla, Missouri, University of Missouri-
      Rolla. 

[8]  A. B. Roy, S. C. Basak, D. K. Harriss, and V. R. 
      Magnuson, Neighborhood complexities and 
      symmetry of chemical graphs and their 
      biological applications. In, Mathl. Modelling Sci.
      Tech. (X.J.R. Avula, R.E. Kalman, A.I. Liapis, 
      and E.Y. Rodin, Eds.). Pergamon Press, 1983,
       pp. 745-750.

[9]  L. B. Kier and L. H. Hall, Molecular Structure
      Description: The Electrotopological State.
      Academic Press, San Diego, CA, 1999.

[10]  L. B. Kier and L. H. Hall, The kappa indices 
      for modeling molecular shape and flexibility. In, 
      Topological Indices and Related Descriptors in
      QSAR and QSPR (J. Devillers and A.T. Balaban, 
      Eds.). Gordon and Breach Science Publishers, 
      Amsterdam, 1999, pp. 455-489.

[11]  S. C. Basak, D. Mills, D. M. Hawkins, and H. 
      A. El-Masri, Prediction of tissue:air partition 
      coefficients:  A comparison of structure-based 
      and property-based methods, SAR QSAR 
      Environ. Res., Vol 13, 2002, 649-665.

[12]  SAS Institute, Inc. In SAS/STAT User Guide, 
      Release 6.03, Cary, NC, 1988. 

[13]  A. E. Hoerl and R. W. Kennard, Ridge 
      regression:  Biased estimation for nonorthogonal   
      problems. Technometrics, Vol 8, 1970, 27-51.

[14]  W. F. Massy, Principal components regression 
      in exploratory statistical research, J. Am. 
      Statistical Assoc., Vol. 60, 1965, 234-246.

[15]  I. E. Frank and J. H. Friedman, A statistical 
      view of some chemometrics regression tools, 
      Technometrics, Vol. 35, 1993, 109-135.

[16]  H. Wold, Soft modeling by latent variables:  
       The nonlinear iterative partial least squares 
       approach. In, Perspectives in Probability and
       Statistics, Papers in Honor of M. S. Bartlett 
      (J.Gani, Ed.). Academic Press, London, 1975.

[17]  D. M. Hawkins, S. C. Basak, and D. Mills, 
      Assessing model fit by cross-validation, J. 
      Chem. Inf. Comput. Sci, Vol. 43, 2003, 579-586.

[18]  S. C. Basak and D. Mills, Quantitative 
      structure-property relationships (QSPRs) for the 
      estimation of vapor pressure: A hierarchical 
      approach using mathematical structural
      descriptors, J. Chem. Inf. Comput. Sci., Vol. 41, 
      2001, 692-701.

[19]  S. C. Basak, B. D. Gute, and G. D. Grunwald, 
      Use of topostructural, topochemical, and 
      geometric parameters in the prediction of vapor 
      pressure: A hierarchical approach, J. Chem. Inf. 
      Comput. Sci., Vol. 37, 1997, 651-655.

[20]  S. C. Basak, B. D. Gute, and G. D. Grunwald,
      A comparative study of topological and 
      geometrical parameters in estimating normal 
      boiling point and octanol-water partition 
      coefficient, J. Chem. Inf. Comput. Sci., Vol. 36, 
      1996, 1054-1060.

[21]  S. C. Basak, B. D. Gute, and G. D. Grunwald, 
      Assessment of the mutagenicity of aromatic 
      amines from theoretical structural parameters: A
      hierarchical approach, SAR QSAR Environ. Res., 
      Vol. 10, 1999, 117-129.

[22]  S. C. Basak and D. Mills, Prediction of 
      mutagenicity utilizing a hierarchical QSAR 
      approach, SAR QSAR Environ. Res., Vol. 12, 
      2001, 481-496.

[23]  S. C. Basak, B. D. Gute, and G. D. Grunwald,
      Relative effectiveness of topological, 
      geometrical, and quantum chemical parameters 
      in estimating mutagenicity of chemicals. In, 
      Quantitative Structure-activity Relationships in 
      Environmental Sciences VII (F. Chen and G. 
      Schuurmann, Eds.). SETAC Press, Pensacola, 
      FL, 1998, pp. 245-261.

[24]  S. C. Basak, D. Mills, D. M. Hawkins, and H. 
      El-Masri, Prediction of human blood:air partition 
      coefficient:  A comparison of structure-based 
      and property-based methods, Risk Analysis, Vol. 
      23, 2003, 1173-1184.

[25]  S. C. Basak, D. M. Hawkins, and D. Mills, 
      Predicting blood:air partition coefficient of 
      structurally diverse chemicals using theoretical 
      molecular descriptors. In, Advances in Molecular   
      Similarity (R. Carbo-Dorca and P.G. Mezey, 
      Eds.). Kluwer, Amsterdam, in press.

[26]  S. C. Basak, D. Mills, H. A. El-Masri, M. M.
      Mumtaz, and D. M. Hawkins, Predicting 
      blood:air partition coefficients using theoretical 
      molecular descriptors, Environ. Toxicol. 
      Pharmacol., Vol. 16, 2004, 45-55.

[27]  S. C. Basak, D. Mills, M. M. Mumtaz, and K. 
      Balasubramanian, Use of topological indices in 
      predicting aryl hydrocarbon receptor binding 
      potency of dibenzofurans: A hierarchical QSAR 
      approach, Indian J. Chem., Vol. 42A, 2003, 
      1385-1391.

[28]  S. C. Basak, D. Mills, and B. D. Gute, 
      Predicting Bioactivity and Toxicity of Chemicals 
      from Mathematical Descriptors: A Chemical-
      cum-Biochemical Approach. In, Advances in 
      Quantum Chemistry (D.J. Klein and E. Brandas, 
      Eds.). Elsevier, in press.



�EMBED ChemDraw.Document.6.0���





� EMBED Word.Document.8 \s ���








[image: image3.emf]R 2   c.v.     Descriptors  RR  PCR  PLS   TS  0.628  0.601  0.450   TS+TC  0.816  0.735  0.697   TS+TC+3D  0.814  0.730  0.69 4        TS  0.628  0.601  0.450   TC  0.793  0.752  0.657   3D  0.622  0.385  0.466    

[image: image4.emf]R 2   c.v.     Descriptors  RR  PCR  PLS   TS  0.628  0.601  0.450   TS+TC  0.816  0.735  0.697   TS+TC+3D  0.814  0.730  0.69 4        TS  0.628  0.601  0.450   TC  0.793  0.752  0.657   3D  0.622  0.385  0.466    

_1173782310.doc
		Descriptors

		R2 c.v.



		

		RR

		PCR

		PLS



		TS

		0.628

		0.601

		0.450



		TS+TC

		0.816

		0.735

		0.697



		TS+TC+3D

		0.814

		0.730

		0.694



		

		

		

		



		TS

		0.628

		0.601

		0.450



		TC

		0.793

		0.752

		0.657



		3D

		0.622

		0.385

		0.466






_1173782444.cdx

_1173612181.cdx

