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Abstract: - We produce global estimates of data for vibration frequencies of main-group diatomic molecules for the first time, using a very sophisticated-neural network program designed for forecasting financial markets.  Input vector selection, frequency compensation, genetic-algorithm variable selection, hidden nodes, multiple transfer functions, Kalman filtering, and a root-mean power evaluation function are used to produce 56 models.  Of these, an optimal number of 23 models is selected.  Mean error measures over the 23 networks are determined for all molecules and 181 outliers are deleted.  The number of predictions per molecule varies from 18 to 23; and the average of the 99% confidence limits of these predictions is 9.04%.  To test these estimates, data for 116 molecules were gleaned from the literature.  The average ½-spread in these literature data for molecules is approximately 4.4%.  90 of our predictions agreed with the literature values to within the literature ½-spread plus the predictions’ 99% confidence limits.  18 more, a total of 108, of them were outside of the sum of the two error measures by less than 50% of the prediction magnitude.  
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1   Introduction

We describe the use of neural networks to predict values of diatomic molecular vibration frequency, ωe (cm-1), on the basis of high-quality tabulated data [1]. Such spectroscopic variables are of value to engineers who design incinerators and combustion engines, to scientists who study the atmospheres of the earth and planets, and to astrophysicists who analyze stellar atmospheres to test models of heavy-element production in stars.  It is a property that requires careful analysis because it has a wide range of values [2].  In this paper we hope to dispel some common misconceptions about neural networks and also to meld the art and the science of using them under the unique constraints presented by molecular data.  The words “model” and “network” are used interchangeably.

     Artificial neural nets have previously been used globally on diatomic molecular properties, however the only result was memorization of the data with no predictions [3].  They have been used successfully to forecast internuclear separations [4], but for a slightly less global selection of molecules having a much smaller range of values than in this study.  The larger range of values encountered here required a much more sophisticated approach than that used before.     

2   Data and Resources

The molecules are those with main-group and transition-metal atoms, from periods 2 to 6, but excluding hydrogen and the rare gas elements.  The exclusion simplifies the prediction task somewhat because of the unique nature of hydride diatomics, but sufficient challenges remain due to the anomalous nature of alkali-metal pairs, to differences between main-group and transition-metal molecules, to second periodicity, and to relativistic effects in molecules with atoms from period 6.  The total number of non-redundant molecules is 2145.
     The inputs (dependent variables) are R1, R12, C1, C12, R2, R22, C2, C22 (where Ri and Ci are the period and group numbers of atom i), the difference and the cube of the difference between the larger and the smaller electronegativities, and the geometric mean of the two electro-negativities.  The first eight inputs have been used very successfully in the prediction of diatomic molecular internuclear separations [4].  The next two enhance training and prediction in the portions of the space where the group numbers are very different and the third takes advantage of the tabulated data in the portions of the space where most the data lie.

     20 of the total of 215 original vectors [1] were kept out for validation.  Half of these were chosen because they are from the more populated portion of the vector space and the other half were selected because they were poorly predicted in an earlier investigation.

      A Pentium IV with a 3 GHz processor was used and made it possible to build a model in one to three days (compared to one to two months with a Pendium II 360 MHz).  Predict, originally designed by Neuralwork for forecasting financial markets, was the chosen application.  

3   Frequency Compensation

At the high and low ends of the range of tabulated data for ωe, the data are relatively sparse compared to the center of the range, which would result in high values being underestimated and low values being overestimated.  To avoid this serious problem, the representation of the molecules at the extremes was increased.  The duplications caused the training set to grow from some 200 to around 1500 data vectors. 

4   Error Measure and Variable Selection 
The software was set to use third-power RMS error (difference between predicted and tabulated data) in preference to correlation, as its measure of its progress.  To justify not using correlation, it is noted that the correlation between the first hundred integers and their squares is 0.964 whereas the RMS errors indicate poor agreement.

     The program initially transformed on all of the data.  Since it was reducing the effectiveness of (or functionally removing) independent variables, further variable selection was explicitly allowed by the genetic algorithm facility of the program. 

     To avoid overtraining, the number of nodes was limited to less than 30; it is a common misconception that the larger the number of nodes, the better.  

5   Creation of networks

Once we had experimented at length with various parameters that define the network, we commenced the production of networks which were run in exactly the same way except for the value used to initialize the random number generator.  We achieved a “criterion error,” i.e., an RMS average of all absolute differences between predicted and tabulated data, as small as about 0.015 (or somewhat larger—for example, up to about 0.0165 if the model had as few as 14 nodes).  On occasion, a network would reach an error smaller than the criterion error even though there were many fewer hidden nodes than allowed at that point.  In these cases, Predict was stopped, that network was saved, and the run was continued or restarted using the same seed for the random number generator.  In either case the training was allowed to complete in the usual way, testing a maximum number of networks with a maximum number of nodes.  The reason for the early stop of the networks with fewer nodes is, as mentioned above, that such a network should generalize better.

     When we had accumulated 25 models, we looked back at all the models constructed previous to the final decisions about protocol and decided to include those that reached the criterion RMS error.  The result was a collection of 56 models.  Table I, below, shows the results for one “good” model.   It shows the validation-set molecules, the tabulated and predicted ωe, and the absolute and signed percentage errors.  The negative signed errors in the table differ by one unit due to a peculiar integer function. 

6   Analysis of the Networks

56 networks met the RMS criterion.  If for any one molecule the absolute error was above 25% or if for several molecules the absolute errors were from 15% to 25%, then that network was dropped; this was the case for 11 networks.  We measured the mean, standard deviation ((), and standard error (or SE, which is ( divided by the square root of the number of observations (45)) for each molecule.  Then we checked each prediction in each network, looking for outliers.  The heuristic enters in the meaning of “outlier,” which we took to be an excursion greater than 8 SE from the overall mean.

      Using this system, we counted the number (from 52 to 567) of outlying predictions in each network and ordered them.  There were no networks with between 306 and 355 outliers, so we used 306 outliers (about 15% of the total number of predictions for each molecule) in the next step.  The number of networks with more than 306 outliers was 22 and we deleted them, keeping 23.   The numbers of predictions per molecule in these 23 networks are from 18 to 23. 
Table 1. Validation molecules in a good model
	
	Tab’d ωe
	Pred’d ωe
	% Errors

	SnCl
	351.10
	360.26
	2
	-3

	SbS
	480.00
	519.11
	8
	-9

	SbF
	605.00
	602.28
	0
	0

	PBr
	428.40
	458.79
	7
	-8

	KRb
	75.50
	60.84
	19
	19

	CuC
	264.55
	265.08
	0
	-1

	CdF
	535.00
	534.96
	0
	0

	AlN
	1173.33
	1156.94
	1
	1

	AgAg
	192.40
	174.34
	9
	9

	AlO
	979.23
	943.18
	3
	3

	PS
	739.10
	721.71
	2
	2

	SiSe
	580.00
	584.89
	0
	-1

	TlS
	477.30
	451.17
	5
	5

	SrS
	388.38
	431.05
	10
	-11

	SnSe
	331.20
	354.89
	7
	-8

	TlCl
	283.70
	313.05
	10
	-11

	TeAu
	212.00
	211.51
	0
	0

	BiBr
	209.50
	226.03
	7
	-8

	BiI
	163.80
	137.20
	16
	16

	BaI
	152.30
	122.78
	19
	19

	
	
	Average
	6.2
	0.7

	
	
	(
	6.2
	9.2


     As a parallel tactic, we took the eight best models and calculated ( (averaged over all molecules).  We repeated this process over and over and found that the average ( bottomed out at the 23rd model. 

     Throughout, we assumed that the use of multiple networks will produce predictions for a molecule that cluster near the actual value of ωe.  

     This entire process of culling networks involved an average change in the general mean for any given molecule, in the direction of greater agreement with the tabulated value, of about 9% (with a median of less than 3.5%).  

7   Final Results

Having reduced our data set to 23 networks, we then again calculated the means, (, and SE.  We defined outliers as those data that differed from this recalculated mean by more than 10 SE.  The 181 outliers were deleted; after these deletions, the number of predictions per molecule varied from 18 to 23; the mean prediction, and the average (, SE, 99% confidence limit, and 99% confidence limit expressed as a percentage of the mean were calculated and are 310.48, 47.38, 10.32, 26.58, and 9.04%.  We have compared them with a sample of 116 data (with error measures) from the literature and find that 78% of them are within the sum of the prediction 99% confidence limits and the literature ½-spread error measures.  93% of the 116 data differ by a amount of less than half of their predictions.  These percentages would be higher except that most of the literature values pertained to transition-metal molecules.
8   Comments and Conclusions

We estimated 2145 diatomic-molecular vibration frequencies with an average 99% confidence limit, divided by the estimates, of 9.04% and find that they compare well with a sample of data from the literature.  The bootstrap methods used to make the estimates include improvements over the methods we employed earlier [4] and are far more precise than previous least-squares studies.
     We have crossed from one specialty to a very different one and used a very sophisticated neural network application.  Some of the techniques used here can be found in Ref. [5].

     We are in the process of applying this bootstrap protocol to properties of triatomic molecules and to additional properties of diatomic molecules.
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