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Abstract: - In this paper, the geometric margin is used as a robustness indicator of a CNN (cellular neural 
network) implementing a linearly separable Boolean function. For a class of uncoupled CNNs having low 
template values, characterization of canonical robust template values is made by finding the maximal margin 
canonical hyperplane. Support vector machine (SVM) technique is employed for the associated optimization 
problem. Two illustrative examples are provided to illustrate the main result. 
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1  Introduction 

CNNs (cellular neural networks), first introduced 
by Chua and Yang [1,2], are large scale nonlinear 
circuits composed of locally connected cells. CNN 
has a tremendous variety of applications in the fields 
of dynamic systems and digital image processing 
[3-5]. 

 
The class of CNNs without feedback 

interconnection from neighboring cells, namely the 
uncoupled CNNs, plays an important role in many 
practical applications. Furthermore, the simplicity of 
the uncoupled CNN circuit renders it attractive in 
VLSI implementation. The binary steady-state output 
in terms of the binary input of the uncoupled CNN 
can be represented by a linearly separable Boolean 
function. Most of the elementary applications can be 
derived and analyzed via Boolean functions [6-8], 
which is directly related to the CNN template 
parameters. 

 
One of the crucial issues of VLSI CNN chip design 

is the robustness of a template set for CNN [9]. 
Analog VLSI implementations of CNN have 
numerous limitations that need to be taken into 
account in the theory of CNN in order to guarantee 
correct and efficient operations. Template parameters 
can only be realized with a precision of typically 
5~10% of the nominal values and usually only a 
discrete set of possible values is available [10]. 

 
By treating the truth table of a linearly separable 

Boolean function generated by an uncoupled CNN as 
the training data set, the geometric margin of the 

training set is used as a robustness indicator of the 
given CNN. The maximal margin classifier of a 
training data set, which provides the maximum 
geometric margin for the given training data set, will 
be found by solving an optimization problem in the 
realm of support vector machine (SVM) theory. SVM 
is a learning system which was first introduced by 
Vapnik and his coworkers in 1992 [11]. A unique 
feature of the SVM is that the final discriminant 
function for classification problem can be expanded 
on a small subset of training data, which is referred to 
as support vectors [12,13]. In the meanwhile, the 
maximal margin of the optimal separating hyperplane 
to the nearest vertices can be computed directly from 
a neat formula.  

 
It is a common practice for robustness 

consideration to keep the template values of a CNN 
low. It will be seen that this amounts to providing a 
guaranteed geometric margin. For a class of 
uncoupled CNNs having low template values, it is the 
purpose of this paper to characterize those template 
values for maximum robustness. 

 
 

2  Uncoupled CNN 
Consider a standard CNN consisting of an NM ×  

rectangular array of cells. Without loss of generality, 
we will consider exclusively  neighborhood for 
each cell 

33×
( )jiC , , Mi ,,2,1 L= , . 

The CNN parameters are represented by a triple 
Nj ,,2,1 L=

( )zBA ,, , where  and [ klaA = ] [ ]klbB = , 
{ }1,0,1, −∈lk , are 33×  feedback and control 

templates, respectively, and z is the threshold value. It 

 



is customary to use the following notation to 
represent the CNN template parameters: 
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The uncoupled CNN is represented by 
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The governing equations of the uncoupled CNN are 
given by 
 
 ( ) ( ) ijijijijijijij wxgwxhx +== :,& , (2a) 
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where , , and  are the state, output, and 
threshold of 

ijx ijy ijz
( )jiC , , and , ljkiu ++ , { 1,0,1, }−∈lk , 

are inputs from the neighboring cells including 
( )jiC , . Moreover, ( )ijij xg  is called the 

driving-point component and  is called the offset 
level. 

ijw

 
With the static binary inputs, i.e., { }1,1, −∈++ ljkiu , 

the steady-state output ( )∞ijy  of ( )jiC ,  can be 
calculated explicitly without integrating (2), which is 
stated as follows [8, Theorem 6.1]. 

 
If , then, starting from any 100 >a ( ) ( )1,10 −∈ijx , 

we have 
 

( ) ( ) ( )[ ]ijijij wxasigny +−=∞ 0100 . 
 

If , then we have 100 =a
 

( ) [ ]ijij wsigny =∞ , if , 0≠ijw

( ) ( ) [ ]1,10 −∈=∞ ijij xy , if . 0=ijw
 

If 100 <a , then we have 
 

( ) [ ]ijij wsigny =∞ , if 001 awij −≥ , 

( ) ( ) ( 1,11 1
00 −∈−=∞ −

ijij way ) , if 001 awij −< . 

 
Note that in the  case, by absorbing the term 100 >a
( ) ( )0100 ijxa −  into the offset level or by selecting 
( ) 00 =ijx , we have  

 
( ) [ ]ijij wsigny =∞ . 

 
For simplicity, rename the uncoupled CNN (1) as 
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Also rename , , , , …, and 

 in (2d), as , , , , …, and , 
respectively. Then we have 

1,1 −− jiu jiu ,1− 1,1 +− jiu 1, −jiu

1,1 ++ jiu 1u 2u 3u 4u 9u

 
( )ufbuwbuwuwwij =+=+++= :,... 9911 , 
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Usually w is called the weight vector and b is called 
the bias. 
 

It is well known that a Boolean function 
( )921 ,...,, uuuβ  of nine variables is realizable by 

every cell of an uncoupled CNN if and only if ( )⋅β  
can be expressed by the formula 

 
( ) [ ]buwuwuwsignuuu ++++= 992211921 ...,...,,β , 

 
where , iw 9,,2,1 L=i , and b are real constants, 
and { }1,1 −∈iu , 9,,2,1 L=i , is the ith Boolean 
variable [8, Theorem 6.2].  
 

It is important to note that the discriminant function  
 
( ) buwuwuwuf ++++= 992211 ...:  

 
is an affine-linear function of . Thus 
implementing a linearly separable Boolean function 

9ℜ∈u

 



by an uncoupled CNN is a linear classification 
problem. 
 
 
3  Maximal Margin Classifier 
 Let  and nX ℜ⊆ { }1,1: −=Y . Suppose we are 
given a nontrivial training set 
 
 . ( ){ } YXyxS l

iii ×⊆= =1,:
 
The training set S is said to be linearly separable if 
there is a hyperplane of the form 
 

( ) 0,:, =+= bxwxf bw , , , nw ℜ∈ ℜ∈b
 
that correctly classifies the training data. By treating 
the truth table of a given Boolean function as the 
training data set with  training data of nine 
inputs and one binary output ( ), this 
training set must be linearly separable in order for the 
Boolean function to be realizable by an uncoupled 
CNN.  

512=l
}1,1{ −∈iy

 
As pointed out in [8], since no template parameters 

can be realized exactly in practice, it is important that 
the CNN template be designed to be as robust as 
possible. This guarantees the reliability of CNN 
hardware implementation.  

 
For given  defining a hyperplane, the 

functional margin 
),( bw

( )bwS ,µ  and the geometric 
margin ( )bwS ,η  of  with respect to the 
training set S are defined by, respectively,  

( bw, )
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Note that positive scaling of w and b will affect the 
functional margin, but with geometric margin 
unchanged. This geometric margin will be used in 
this study as the robustness measure of an uncoupled 
CNN. The margin Sγ  is defined to be the maximal 
geometric margin over all hyperplanes, i.e., 
 

( )bwSbwS ,max:
,
ηγ = . 

 
A hyperplane realizing this maximum is called a 
maximal margin hyperplane or optimal hyperplane. 
Any template realizing a maximal margin will be 

called a maximal margin template or optimal 
template. See Fig. 1. The optimal canonical 
hyperplane, with the functional margin equal to 1, 
can be obtained by solving the following primal 
optimization problem: 
 
(P) minimize   wwT12−

subject to [ ] 1, ≥+⋅ bxwy ii for . li ,,2,1 L=
 
Suppose ( )**,bw  solves the primal optimization 
problem (P). Then the maximal margin hyperplane is 
given by ( ) 0**,* =+= bxwxf  with margin 

1* −
= wSγ . 

 

 
 

For CNN template design, we assume the initial 
state ( )0ijx  to be zero so that the value of  
would not affect the resulting optimal values of B 
template and the threshold . Note again that once 
the optimal  and  have been found, if we 
choose 

00a

ijz
*w *b

100 <a  in the template design, then, for 
correct binary output,  and  must be 
multiplied by the constant  for actual 
template parameters and bias in order to provide a 
functional margin 

*w *b
001 a−

001 a− . 
 
 
4  Optimal Uncoupled CNN Templates 

It is a common practice for robustness 
consideration to keep the template values of a CNN 
low. Since the maximum geometric margin is given 
by the reciprocal of the Euclidean norm of B template 
values corresponding to an optimal canonical 
hyperplane, this amounts to providing a guaranteed 
robustness. In this paper, we consider the class of 
uncoupled CNNs (3) with { }1,0,1−∈iw , 

9,,2,1 L=i . 
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Fig. 1. Maximal margin hyperplane. 

 



Recall that the steady-state output ( )∞ijy  for 
binary inputs is given by 
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ith the discriminant function given by 

Here ( )9,90 −∈z  is arbitrary. There are seven 
nonzero entries in B template, so . There are 
only seven possible maximal margin templates 

7=r

( )optoptopt zBA ,,  resulting from this class, which are 
given by 

w
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 is interesting to characterize the template 

Suppose there are r nonzero entries in B template. 
It

 It
0AAopt = , 0BBopt = , . 6,4,,4,6 L−−=optzparameters such that the uncoupled CNN determines 

a maximal margin hyperplane. 
 

 
The (maximum) margin of this class is given by 

71=optM . 
 is easy to see that  
  

{ rrrrruw ,2,,4,2,, −+−+−−∈ L . }
 

 order to provide a unity functional margin for 

 
his guarantees that the values of  will never 

e B

In
optimal canonical hyperplane, it is necessary to 
choose the bias b from the set 
 

{ }1,3,,3,1 −−+−+−= rrrrZ L . 

Example 2: The class of uncoupled CNNs 
investigated in this paper is rather special. The 
original template values in B, which are -1, 0, and 1, 
remain unchanged for a maximal margin template. 
Only threshold matters. Consider now the following 
uncoupled CNN, which does not fall in the class of 
CNNs considered in this paper: 
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be zero for all training patterns of th oolean truth 
table and the functional margin is unity. It is not 
difficult to show that if we choose the bias from the 
set Z, the corresponding uncoupled CNN determines 
a maximal margin classifier with maximum margin 
given by r1 . This can also be justified by first 
constructin  Boolean truth table from a given 
uncoupled CNN. Next, by treating the truth table as 
the training data set, we solve the SVM optimization 
problem (P). Finally, the resulting weight vector and 
the bias then determine the B template values and the 
threshold value. 
 

 
The optimal canonical template values generating the 
same Boolean function are given by 
 

0AAopt = , 
000
000
101 −

=optB , 1−=optz . 
g the

We wish to point out that our main result is useful 
fo

  Illustrative Examples 
ss of templates 

000A
 

 
It is observed that some template values in B and the 
threshold have been changed. It is interesting to 
further investigate the characterization of maximal 
margin CNN template values for a more general class 
of CNNs. 

r speeding up the CFC algorithm which is used to 
find a series of uncoupled CNNs implementing an 
arbitrary Boolean function [14]. 
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