
A New Fixed-Delay Broadcasting Protocol for Near 
Video-on-Demand Services 

 
YU-WEI CHEN 

Department of Computer and Information Science  
Aletheia University 

No. 32, Chen-Li Street, Tamsui, Taipei, 25103 Taiwan 
REPUBLIC OF CHINA 

                       http://www.cis.au.edu.tw 
 
 

Abstract: - This work presents a novel fixed-delay broadcasting protocol for near video-on-demand service.  
Consider a film S is divided into n equal parts {S1, S2, …, Sn} and played through k channels.  Each segment Si 
must appear at least once every i+c-1 segments rather than i segments.  The value of parameter c means that the 
users have to wait the time of c segments.  Each channel of k channels is first partitioned into subchannels by a 
heuristic strategy.  Then, a greedy approach is applied to assign the n segments to k channels.  The waiting time 
is c times the duration of one segment.  As a result, the proposed method outperforms the previous broadcasting 
methods in terms of the maximum waiting time, for the same number of channels. 
 
Key-Words: - Broadcasting, Fixed-delay, Multimedia, Near Video-on-Demand, Protocol, Waiting Time. 
 
1   Introduction 
The so-called Video-on-Demand (VOD) system 
refers to the use of a combination of a television set 
and a set-top-box or computer, lined via the Internet 
to a film provider.  The system allows the user to 
choose which film to watch and utilize 
video-cassette-recorder capabilities such as playback, 
forward, rewind, pause and others.  One of the 
simplest ways to utilize the various 
video-cassette-recorder capabilities is for the 
provider to set up a dedicated channel for the user 
when a request to view a film is made.  This VOD 
system is called the true VOD system 
     The main problem of the True VOD system lies in 
the requirement for an extremely large bandwidth for 
transmitting a large amount of information.  Many 
researchers have proposed various solutions to 
reduce the need for bandwidth.  They can be broadly 
categorized into three types for VOD systems – 
batching [1]-[3], stream tapping [4]-[6] or patching 
[7] and broadcasting [8]-[21]. 

Of the three VOD types, broadcasting saves much 
more bandwidth than the other two.  The 
broadcasting approach works by first dividing the 
film into several segments, and then allowing the 
server to play them repeatedly in a few specified 
channels.  Should a user wish to view the film, the 
greatest waiting time will be the duration of one such 
segment.   Different methods [12]-[18] are used to 
divide the film into different numbers of segments, so 
waiting times differs.  The user must also have 
enough buffer space to store the downloaded 

segments for continuous playback.  This system is 
also known as the near VOD system. 

Recently, Pâris et al. [22] and Chen [23] proposed 
“fixed-delay” broadcasting protocols.  Should a user 
wish to view a film, the greatest waiting time will be 
the duration of m segments rather than one segment.  
The two methods [22], [23] have shorter maximum 
waiting time than those in [12][15]-[18].  In addition, 
Pâris et al. [24] proposed another fixed-delay 
broadcasting protocol by using previews to reduce 
the cost of VOD services. 

This work presents a novel fixed-delay 
broadcasting protocol for near VOD service.  
Consider a film S is divided into n equal parts {S1, 
S2, …, Sn} and played through k channels.  Each 
segment Si must appear at least once every i+c-1 
segments rather than i segments.  Each channel of k 
channels is first partitioned into subchannels by a 
heuristic strategy.  Then, a greedy approach is 
applied to assign the n segments into k channels.  The 
user simultaneously downloads the film segments 
from k channels into the set-top-box (STB) and plays 
them in order.  All users wait for a fixed delay T 
before watching the video.  This waiting time T is c 
times the duration of one segment.  As a result, the 
proposed method outperforms the previous 
broadcasting methods [22], [23] in terms of the 
maximum waiting time, for the same number of 
channels. 

This paper is organized as follows.  In Section 2, 
preliminaries are broadly introduced.  The new 
broadcasting protocol is proposed and analyzed in 



Section 3.  Finally, in Section 4, the conclusions are 
addressed. 
 
 
2   Preliminaries 
 
2.1 Fixed-Length Segment-Scheduling 

Problem 
Fast Broadcasting [12][15], Pagoda broadcasting 
[16][17], and Recursive frequency splitting 
broadcasting [18] are all problems of Fixed-length 
Segment-Scheduling.  In such a problem, the film S is 
always divided into n equal parts (S1, S2, …, Sn) and 
played back through k channels, at the same time 
assuming each channel’s bandwidth is just sufficient 
to fit the usage rate of the film during normal 
playback and that the user can receive information 
from k channels.  Since before watching film segment 
Si the first i-1 segments S1, S2, …, Si-2, and Si-1 have to 
be watched, segment Si has to at least appear once in 
the time every i segments is played to ensure proper 
playback without breaks in between.  Therefore 
segment Si at least needs to use up 1/i of channel 
bandwidth.  Under the condition of uninterrupted 
playback, the largest number of segments that can be 
divided is n, and n satisfies: 

 
2.2 Traditional Broadcasting Protocols 
 
2.2.1   Stagger Broadcasting 
Assume we want to play a film S of time length L 
through k channels {C0, C1, …, Ck-1}.  In the initial 
time, stagger broadcasting protocol [9] let the whole 
film will repeatedly transmit on C0.  After the time 
i·L/k, 1≤i≤k-1, the same whole film will also be 
transmitted on Ci periodically.  The maximum 
waiting time is L/k. 
 
2.2.2   Fast Broadcasting 
The basic concept of fast broadcasting method [12] is 
described as follows.  A film S is first partitioned into 
2k-1 segments {S1, S2, …, S2k-2, S2k-1}.  Segment S1 
will repeatedly transmit on C0.  The 2i segments {S2i, 
S2i+1, …, S2i+1-1} repeatedly transmit in order on Ci for 
1≤i≤k-1. 
 
2.2.3   Pagoda Broadcasting 
The basic concept of pagoda broadcasting method 
[17] is described as follows.  A film S is first 
partitioned into n segments {S1, S2, …, Sn} where n = 
4(5(k/2)-1)-1 if k is even and n =2(  2/5 k ) if k is odd.  

Segment S1 will repeatedly transmit on C0.  Let 
q=2r-1 for r≥1 and the index of Sz is smaller than 
those of the other segments broadcasted on Cq.  The 
z/2 segments {Sz, Sz+1, …, S3z/2-1} repeatedly transmit 
in order on the odd slots on Cq.  The z segments {S2z, 
S2z+2, S2z+4, …, S3z-2, S2z+1, S2z+3, S2z+5, …, S3z-1} 
repeatedly transmit in order on the even slots on Cq. 

After transmitting segments on Cq, the following 
introduces the segments scheduling on Cq+1.  The z/2 
segments {S3z/2, S3z/2+1, …, S2z-1} repeatedly transmit 
in order on the slots 3i+1, 0≤i, on Cq+1.  The z 
segments {S3z, S3z+2, S3z+4, …, S4z-4, S4z-2, S3z+1, 
S3z+3, …, S4z-3, S4z-1} repeatedly transmit in order on 
the slots 3i+2 on Cq+1.  The z segments {S4z, S4z+2, 
S4z+4, …, S5z-4, S5z-2, S4z+1, S4z+3, …, S5z-3, S5z-1} 
repeatedly transmit in order on the slots 3i+3 on Cq+1. 

If k is odd, the pagoda method is finished.  
Otherwise, if k is even, the z segments {Sz, Sz+1, 
Sz+2, …, S2z-1} repeatedly transmit in order on Ck-1. 

Fig. 1 and Fig. 2 show the Pagoda scheme’s 
scheduling for three and four channels, respectively. 

 
Channel 

S1 S1 S1 S1 S1 S1 … 
S2 S4 S2 S5 S2 S4 … 
S3 S6 S8 S3 S7 S9 … 

 

C0

C1

C2

Time Slot
 Fig. 1.  Pagoda scheme’s scheduling for three 

channels. 
 
Channel 

S1 S1 S1 S1 S1 S1 S1 S1 S1 … 
S2 S4 S2 S5 S2 S4 S2 S5 S2 … 
S3 S6 S8 S3 S7 S9 S3 S6 S8 … 
S10 S11 S12 S13 S14 S15 S16 S17 S18 … 

 

C0 

Time Slot 

C1 
C2 
C3 

 Fig. 2.  Pagoda scheme’s scheduling for four 
channels. 

 
2.2.4   Recursive Frequency Splitting 
Broadcasting 
The basic concept of recursive frequency splitting 
(RFS) broadcasting scheme [18] is described as 
follows.  Tseng, Yang, and Chang first define the slot 
sequence SS(Ci, p, q) as an infinite sequence of time 
slots [p, p+q, p+2q, …] belonging to channel Ci, 
beginning at slot p, and repeating infinitely with a 
period of q slots, where Ci is one of the k channels, p 
≥ 0 is an integer, and q ≥ 1 is an integer, 0 ≤ p ≤ q – 1. 

Initially, let POOL = {SS(C0, 0, 1), SS(C1, 0, 1), 
SS(C2, 0, 1), …, SS(Ck-1, 0, 1)} denote the set of free 
channels and let j be the index of segment.  The initial 
value of j is 1.  Second, pick a slot sequence SS(Ci, p, 

.
1

1...
2
1

1
11...

2
1

1
1

+
+++<=+++

n
k

n



q) with the smallest value of j mod q from POOL 
such that q ≤ j.  Let POOL = POOL – {SS(Ci, p, q)}.  
Third, split SS(Ci, p, q) into {SS(Ci, p, αq), SS(Ci, 
p+q, αq), SS(Ci, p+2q, αq), …SS(Ci, p+(α-1)q, αq)} 
where α =  qj / .  Segment Sj is broadcasted on the 
slots in SS(Ci, p, αq).  Do the union POOL = POOL 
∪ { SS(Ci, p+xq, αq) | 1 ≤ x ≤α-1}.  If POOL is not 
empty, then increase j by one and go to the second 
phase.  Otherwise, terminate this process and output 
the value of j.  Fig. 3 illustrates the result of RFS 
algorithm with four channels. 
 
Channel 

S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1

S2 S4 S2 S8 S2 S4 S2 S16 S2 S4 S2 S8 S2 S4 S2 S17 S2 S4 S2 S8

S3 S6 S9 S3 S7 S18 S3 S6 S22 S3 S7 S9 S3 S6 S19 S3 S7 S23 S3 S6

S5 S18 S12 S14 S15 S5 S11 S13 S28 S24 S5 S10 S12 S14 S25 S5 S11 S13 S21 S15

 

C0 
C1 
C2 
C3 

Time Slot

 Fig. 3.  Recursive frequency-splitting scheme’s 
scheduling for four channels. 

 
2.3 Fixed-Delay Broadcasting Protocols 
 
2.3.1   Fixed-Delay Pagoda Broadcasting 
Pâris et al. [22] proposed a fixed-delay pagoda 
broadcasting (FDPB) protocol.  With the FDBP 
protocol, segments Si must be transmitted at least 
once per m+i-1 slots, where m is an integer m ≥1.  
Consider a case in which m=9; the basic concept of 
FDPB protocol is thus described as follows.  Segment 
S1 is the first segment to be broadcast on channel C0 
and will need to be transmitted at least once every 
nine slots.  The first channel C0 is partitioned into 
three (= 9 ) subchannels.  The three segments S1, S2 
and S3 will be assigned to the first subchannel on C0 
and each is repeated once per nine slots.  The four 
segments S4 to S7 are assigned to the second 
subchannel on C0 and each is repeated once per 12 
slots.  The five segments S8 to S12 are assigned to the 
third subchannel on C0 and each is repeated once per 
15 slots. 

Segment S13 is the first segment to be broadcast on 
channel C1 and must be transmitted at least once per 
21 (=13+9-1) slots.  The number 21 is not a square 
and the closest square is 25=52, so channel C1 is 
partitioned into five subchannels.  Segments S13 to S16 
are assigned to the first subchannel on C1.  Similarly, 
the four groups, Segments S17 to S21, Segments S22 to 
S27, Segments S28 to S34, and Segments S35 to S42, are 
assigned to the other four subchannels on C1 while 
each of the segments of the four groups will be 
repeated once every 25, 30, 35 and 40 slots, 
respectively. 

Segment S43 is the first segment to be broadcast on 
channel C2 and must be transmitted at least once per 

51 (=43+9-1) slots.  Therefore, channel C2 is 
partitioned into seven subchannels and Segments S43 
to S116 are assigned to C2.  The FDPB protocol can 
achieve segment-to-channel mapping for any k 
channels when the above concept is applied 
repeatedly.  Table 1 illustrates the result of FDPB 
algorithm with seven channels for m=9. 

 
TABLE 1 

Fixed-Delay Pagoda Broadcasting Mapping for m=9 
Channel Number of 

Subchannels 
First 

Segment 
Last 

Segment
C0 3 S1 S12 
C1 5 S13 S42 
C2 7 S43 S116 
C3 11 S117 S308 
C4 18 S309 S814 
C5 29 S815 S2168 
C6 47 S2169 S5810 

 
 
2.3.2   Enhanced Recursive Frequency Splitting 
Broadcasting 
The basic concept of enhanced recursive frequency 
splitting (ERFS) broadcasting scheme [23], called 
c-ERFS, is described as follows.  The number of 
available channels is k.  Segment S1 must appear once 
per c segments, rather than per one segment.  The 
c-ERFS uses the definition of the slot sequence SS(Ci, 
p, q) in [18]. 

Initially, let POOL = {SS(Ci, 0, 1) | 0 ≤ i ≤ k-1} 
denote the set of free channels.  Each channel is 
partitioned into  c  subchannels.  Thus, POOL = 
{SS(Ci, δ,  c ) | 0 ≤ i ≤ k-1, 0≤δ≤  c -1}.  The initial 
value of j is c for c≥1.  Second, pick a slot sequence 
SS(Ci, p, q) with the smallest value of j mod q from 
POOL such that q ≤ j.  Let POOL = POOL – {SS(Ci, 
p, q)}.  Third, split SS(Ci, p, q) into {SS(Ci, p+xq, αq) 
| 0≤x≤α-1, α=  qj / }.  Segment Sj-c+1 is broadcasted 
on the slots in SS(Ci, p, αq).  Set POOL = POOL ∪ 
{ SS(Ci, p+xq, αq) | 1 ≤ x ≤α-1}.  If POOL is not 
empty, then increase j by one and go to second phase.  
Otherwise, terminate this process and output the 
value of j-c+1.  Fig. 4 shows the example schedules 
of segments obtained using 2-ERFS with three 
channels. 
 
Channel 

S1 S3 S1 S7 S1 S3 S1 S15 S1 S3 S1 S7 S1 S3 S1 S16 S1 S3 S1 S7

S2 S5 S8 S2 S6 S17 S2 S5 S21 S2 S6 S8 S2 S5 S18 S2 S6 S22 S2 S5

S4 S17 S11 S13 S14 S4 S10 S12 S27 S23 S4 S9 S11 S13 S24 S4 S10 S12 S20 S14

 

C0

C1

C2

Time Slot

 Fig. 4.  Schedule of segments for 2-ERFS with three 
channels. 

 



 
3   Proposed Broadcasting Protocol 
The basic concept of the proposed fixed-delay 
recursive-frequency-splitting broadcasting (FDRFS) 
protocol is described as follows.  Each Sj does not 
need to appear at least once per j segments; rather, 
each Sj must appear at least once per j+c-1 segments 
for j, c≥1.  Before scheduling the segments on 
available channels, each channel is first divided into 
different subchannels.  Letting x=c, channel C0 is 
divided into  x  subchannels.  Letting x= x+  x , 
channel C1 is divided into  x  subchannels.  
Recursively, each channel is divided into different 
subchannels. 
     Then, the same concept as in [23] is improved and 
applied to schedule the segments, increasing the 
number of cut video segments.  The waiting time for 
the user decreases accordingly.  The difference 
between this paper and [23] is the channel-splitting 
strategy.  For example, a slot sequence SS(Ci, p, q) 
with the smallest value of j mod q is selected for Sj-c+1, 
q ≤ j.  The prime factorization of j/q is a1*a2*…*am 
for ax ≤ ay, 1≤x≤y≤m.  The slot sequence SS(Ci, p, q) 
is first split into {SS(Ci, p+xq, a1q) | 0≤x≤a1-1}.  Then, 
SS(Ci, p+ (a1-1)q, a1q) is split into {SS(Ci, 
p+x(a1-1)q, a1a2q) | 0≤x≤a2-1}.  Further, SS(Ci, p + 
(a1-1)(a2-1)q, a1a2q) is split into {SS(Ci, 
p+x(a1-1)(a2-1)q, a1a2a3q) | 0≤x≤a3-1}.  Recursively 
do the splitting processing, finally, SS(Ci, p + 
(a1-1)(a2-1)…(am-1-1)q, a1a2…am-1q) is split into 
{SS(Ci, p+x(a1-1)(a2-1) …(am-1-1)q, a1a2a3…amq) | 
0≤x≤am-1}.  Consequently, SS(Ci, p, q) can be split 
into 

UU
m

z

a

x

z

y
y

z

y
yi

z

aqaxqpCSS
1

2

0 1

1

1

),)1(,(
=

−

= =

−

= 







−+ ..  

),,)1(,(
11

..
==

−+
m

y
y

m

y
yi aqaqpCSSU  

where .
−

=

=−
1

1

1)1(
z

y
ya  if z=1. 

The proposed method can be implemented using 
the following steps. 
 
Inputs: positive integers k and c.  The number of 

available channels is k.  Segment Sj must 
appear once per j+c-1 segments. 

Outputs: the largest number of segments that can be 
divided. 

Algorithm c-FDRFS 
Step 1.  Let POOL = {SS(Ci, 0, 1) | 0 ≤ i ≤ k-1} denote 

the set of free channels.  Let x=c and i=0. 
Step 2. Channel Ci is partitioned into  x   subchannels 

{SS(Ci, δ,  x ) | 0 ≤δ≤  x -1}.  Let x= x+  x  
and i=i+1.  If i≤ k-1, then redo Step 2.  
Otherwise, go to Step 3. 

Step 3.  Set j = c for c≥1.  Segment Sj-c+1 must appear at 
least once per j segments. 

Step 4.  Select a slot sequence SS(Ci, p, q) with the 
smallest value of j mod q from POOL such 
that q ≤ j.  Let POOL = POOL – {SS(Ci, p, 
q)}. 

Step 5.  Let the prime factorization of value j/q as 
a1*a2*…*am. Split SS(Ci, p, q) into              

UU
m

z

a

x

z

y
y

z

y
yi

z

aqaxqpCSS
1

2

0 1

1

1

),)1(,(
=

−

= =

−

= 







−+ ..  

).,)1(,(
11

..
==

−+
m

y
y

m

y
yi aqaqpCSSU  

Segment Sj-c+1 is broadcasted on the slots in  

).),1(,(
11

..
==

−+
m

y
y

m

y
yi aqaqpCSS   

Set POOL = POOL ∪ 

.),)1(,(
1

2

0 1

1

1
UU
m

z

a

x

z

y
y

z

y
yi

z

aqaxqpCSS
=

−

= =

−

= 







−+ ..
 

Step 6.  If POOL is not empty, then increase j by one 
and go to Step 4.  Otherwise, terminate this 
process and output the value of j-c+1. 

 
Since segment Si must appear at least once per 

i+c-1 slots to ensure proper playback without breaks, 
segment Si at least needs to use up 1/(i+c-1) of 
channel bandwidth.  For uninterrupted playback, the 
largest number of segments that can be divided is n, 
and the upper bound on n satisfies:   

 
Table 2 compares previous FDPB [22], ERFS [23], 

the proposed FDRFS protocol and the upper bound 
in terms of the total segments. 

In the proposed protocol, each Sj must appear at 
least once per j+c-1 segments for j, c≥1.  Therefore, 
the user must wait for the time between c-1 and c 
segments to ensure proper playback without breaks.  
For a fair comparison, the total number of segments 
is divided by c, whose division can be thought of as 
indicating that c segments are packed into a large 
segment.  Table 3 compares previous methods and 
the proposed method in terms of the total segments.  
The proposed method clearly outperforms the 
previous methods in terms of the longest waiting 
time. 
 

 

.
1

1...
1

111...
1

11
+

++
+

+<=++
+

+
ncc

k
ncc



 
TABLE 2 

Total Numbers of Segments for FDPB [22], ERFS 
[23], Proposed Protocol and Upper Bound 

Number of 
Channels 1 2 3 4 5 6 7 

9-FDPB 
[22] 12 42 116 308 814 2168 5810 

100-FDPB 
[22] 156 565 1650 4563 12418 33684 91321

9-ERFS 
[23] 12 45 134 383 1055 2778 7789 

100-ERFS 
[23] 148 575 1766 4963 13649 36735 99708

9-FDRFS 12 45 139 390 1113 3048 8350 
100- 
FDRFS 151 574 1778 5039 13922 37794 102608

9-Bound 15 55 163 456 1254 3423 9319 
100-Bound 171 636 1900 5334 14668 40042 109016

 
TABLE 3 

Total Numbers of Segments for Previous Methods 
and Presented Method 

Number of 
Channels 1 2 3 4 5 6 7 

Staggered 
[9] 

1 2 3 4 5 6 7 

Fast [12] 1 3 7 15 31 63 127 
Pagoda 
[16][17] 

1 3 9 19 49 99 249 

New 
Pagoda [16] 

1 3 9 26 66 172 422 

RFS [18] 1 3 9 25 73 201 565 
4-RFS [18] 1 3 9 26 73 201 565 
9-FDPB 
[22] 1.33 4.66 12.88 34.22 90.44 240.88 645.55

100-FDPB 
[22] 1.56 5.65 16.50 45.63 124.18 336.84 913.21

9-ERFS 
[23] 1.33 5.00 14.88 42.55 117.22 308.66 865.44

100-ERFS 
[23] 1.48 5.75 17.66 49.63 136.49 367.35 997.08

9-FDRFS 1.33 5 15.44 43.33 123.67 338.67 927.78
100- 
FDRFS 1.51 5.74 17.78 50.39 139.22 377.94 1026.08

 
Like the following methods [12][16]-[18][22][23], 

the client  requires buffer to store portion of the video.  
The bound of the buffer requirement can be analysed 
by applying the same analysis concept [25].  
Consider a film S is divided into n equal segments 
and played through k channels.  Each segment Si must 

appear at least once every i+c-1 time slots.  Since 
client receives k segments every time slot but 
consuming only one segment and segment Sj is not to 
buffer after watching, the maximum buffer 
requirement must be bounded by: 























 −+−−+⋅= ∑
==<

i

j jk
nik p

cicikB
1 ,

0

1)1(max  

where pk,j denotes the time period of the slot sequence 
assigned to the segment Sj when using k channels. 
 
 
4   Conclusion 
This work has presented a fixed-delay 
recursive-frequency-splitting broadcasting protocol 
for near video-on-demand service.  The proposed 
method outperforms the previous broadcasting 
methods in terms of the maximum waiting time, for 
the same number of channels.  The bound of the 
maximum buffer requirement is analysed too. 
 
 
References: 
[1] K. C. Almeroth and M. H. Ammar, On the Use 

of Multicast Delivery to Provide a Scalable and 
Interactive Video-on-Demand Service, IEEE 
Journal on Selected Areas in Communications, 
Vol. 14, 1996, pp. 1110-1122. 

[2] A. Dan, P. Shahabuddin, D. Sitaram, and D. 
Towsley, Channel Allocation under Batching 
and VCR Control in Video-on-Demand 
Systems, Journal of Parallel and Distributed 
Computing, Vol. 30, 1995, pp. 168-179. 

[3] A. Dan, D. Sitaram, and P. Shahabuddin, 
Dynamic Batching Policies for an on-Demand 
Video Server, Multimedia Systems, Vol. 4, 1996, 
pp. 112-121. 

[4] S. W. Carter and D. D. E. Long, Improving 
Video-on-Demand Server Efficiency through 
Stream Tapping,” In Proc. of the Sixth 
International Conf. on Computer 
communications and Networks (ICCCN ’97), 
Las Vegas, NV, USA, 1997, pp. 200-207. 

[5] S. W. Carter and D. D. E. Long, Improving 
Bandwidth Efficiency on Video-on-Demand 
Servers, Computer Networks, Vol. 20, 1999, pp. 
99-111. 

[6] S. W. Carter, D. D. E. Long, and J. -F. Pâris, An 
Efficient Implementation of Interactive 
Video-on-Demand, In Proc. of the 8th 
International Symposium on Modeling, Analysis 
and Simulation of Computer and 
Telecommunication Systems, San Francisco, CA, 
2000, pp. 172-179. 



[7] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A 
multicast technique for true video-on-demand 
services,” Proc. 6th ACM Multimedia Conf., 
1998, pp. 191-200. 

[8] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “A 
permutation-based pyramid broadcasting 
scheme for video-on-demand systems,” In IEEE 
Proc. of the International Conf. on Multimedia 
Computing and Systems, 1996, pp. 118-126. 

[9] T. Chiueh and C. Lu, A Periodic Bbroadcasting 
Approach to Video-on-Ddemand Service, 
International Society for Optical Engineering, 
Vol. 2615, 1995, pp. 162-169. 

[10] L. Gao, J. Kurose, and D. Towsley, Efficient 
Schemes for Broadcasting Popular Videos, In 
International Workshop on Network and 
Operating Systems Support for Digital Audio 
and Video, 1998, pp. 317-329. 

[11] K. A. Hua and S. Sheu, Skyscraper 
Broadcasting: A New Broadcasting Scheme for 
Metropolitan Video-on-Demand Systems,” In 
ACM SIGCOMM’97, Vol. 27, 1997, pp. 89-100. 

[12] L. -S. Juhn and L. –M. Tseng, Fast Broadcasting 
for Hot Video Access, In Real-Time Computing 
Systems and Applications, 1997, pp. 237-243. 

[13] L. -S. Juhn and L. -M. Tseng, Harmonic 
Broadcasting for Video-on-Demand Service, 
IEEE Trans. on Broadcasting, Vol. 43, 1997, pp. 
268-271. 

[14] L. -S. Juhn and L. -M. Tseng, Enhanced 
Harmonic Data Broadcasting and Receiving 
Scheme for Popular Video Service, IEEE Trans. 
on Consumer Electronics, Vol. 44, 1998, pp. 
343-346. 

[15] L. -S. Juhn and L. -M. Tseng, Fast Data 
Broadcasting and Receiving Scheme for 
Popular Video Service, IEEE Trans. on 
Broadcasting, Vol. 44, 1998, pp. 100-105. 

[16] J. -F. Pâris, A Simple Low-Bandwidth 
Broadcasting Protocol, Proc. of the 8th 
International Conf. on Computer 
Communications and Networks (IC3N'99), 
Boston-Natick, MA. 1999, pp. 118-123. 

[17] J. -F. Pâris, S. -W. Carter, and D. -D. Long, A 
Hybrid Broadcasting Protocol for Video on 
Demand, In Multimedia Computing and 
Networking, 1999, pp. 317-326. 

[18] Y. -C. Tseng, M. -H. Yang, and C. -H. Chang, A 
Recursive Frequency-Splitting Scheme for 
Broadcasting Hot Videos in VOD Service, 
IEEE Trans. on Communications, Vol. 50, 2002, 
pp. 1348-1355. 

[19] S. Viswanathan and T. Imielinski, Metropolitan 
Area Video-on-Demand Service Using Pyramid 

Broadcasting, IEEE Multimedia Systems, Vol. 4, 
1996, pp. 197-208. 

[20] Y. W. Chen, Y. T. Lee, and M. H. Tsai, A 
Broadcasting Scheme with Supporting VCR 
Functions for Near Video-on-Demand Systems, 
Proc. of the 9th International Conf. on 
Distributed Multimedia Systems, Miami, 
Florida, USA, 2003, pp. 737-742. 

[21] Y. W. Chen and L. R. Han, A New Broadcasting 
Scheme with Supporting VCR Functions for 
Near Video-on-Demand Systems,” Proc. of the 
2004 International Conf. on Imaging Science, 
Systems, and Technology, Las Vegas, Nevada, 
USA, 2004, pp. 163-169. 

[22] J. –F. Pâris, A Fixed-Delay Broadcasting 
Protocol for Video-on-Demand,” Proc. of the 
10th International Conf. on Computer 
Communications and Networks (ICCCN’01), 
Oct. 2001, pp. 418-423. 

[23] Y. W. Chen, An Enhanced Recursive Frequency 
Splitting Broadcasting Algorithm for Near 
Video-on-Demand Services, Information 
Processing Letters, Vol. 92, 2004, pp. 299-302. 

[24] J. –F. Pâris, Using Previews to Reduce the Cost 
of Video-on-Demand Services, J. Research on 
Computing Science, Vol. 13, 2005, pp. 179-189. 

[25] J. P. Sheu, H. L. Wang, C. H. Chang and Y. C. 
Tseng, A Fast Video-on-Demand Broadcasting 
Scheme for Popular Videos, IEEE Trans. on 
Broadcasting, Vol. 50, No. 2, June 2004, pp. 
120-125. 

 
 


