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Abstract:  The  extraction  of  fuzzy  association  rules  for  the  description  of  dependencies  and
interactions from large data sets as those arising in gene expression data analysis applications
perplexes very difficult combinatorial problems that depend heavily on the size of these sets. The
paper describes a two stage approach to the problem that obtains computationally manageable
solutions.  The  first  stage  aims  to  cluster  transactions  that  more  probably  are  associated.
Thereafter,  the  second  stage,  the  fuzzy  association  rule  extraction  follows,  confronting  a
significantly reduced problem.
The clustering  phase is  accomplished  by  means of  a Kernel  Supervised  Dynamic  Grid  Self-
Organized Map (KSDG-SOM).The mutual information metric controls the development of the
KSDG-SOM clusters. This metric allows the formation of data clusters that maximize the mutual
information for transactions of the same cluster and to minimize it between different clusters. In
addition  the  KSDG-SOM  is  capable  of  incorporating  a  priori information  concerning  the
transaction's items that can focus the model to cluster together even more probably associated
items.
After this  initial  data clustering we concetrate on whether the pattern of a transaction can be
associated with characteristics of the patterns of other transactions of the same node. Therefore,
the fuzzy association rules are extracted locally on a per cluster basis. The paper focuses on the
application  of  the  techniques  for  mining  the  gene  expression  data.  However,  the  presented
techniques can easily be adapted and can be fruitful for intelligent exploration of any other data
set as well.
keywords: Fuzzy Association Rules, Mutual Information, Clustering, Self-Organized Maps,
Entropy, Genome Data Mining, Gene Expression Analysis



1 Introduction

Recently,  the discovery of  association  rules  from
databases has become an important research topic
[25,  34].  Although  traditionally  these  techniques
have been developed for commercial applications,
nowadays the genomic revolution presents another
promising domain for their exploitation.
The whole genome studies of gene expression data
of  recent  years  produce  an  extraordinary  large
number  of  measurements.  A great  chalenge is  to
uncover  dependencies  between  genes  from  these
measurements  by  computational  data  mining
techniques. 
There  have  been  several  different  approaches
including linear models [32], probabilistic Boolean
networks [33], and Bayesian networks [10,37]. All
those  approaches  have demonstrated  successes  in
specific instances of the difficult problem of gene
regulatory network reconstruction. 
A  complementary  approach  to  the  regulatory
network  construction  is  the  extraction  of
association rules that can provide useful insight to
some aspects of the interactions between genes in
an easily readable form [36]. 
However, all they face the same main difficulty that
arises from the extremely large combinatorial space
of  the  possible  solutions  and  the  comparatively
very  small  sample  size  of  microarray  data
experiments.
The  present  work  attempts  to  cope  with  this
difficulty  by  a  two  step  divide-and-conquer
approach:

1) A  mutual  information  based  clustering
implemented with the KSDG-SOM model, that
isolates  the  more probably  related  genes  onto
the same clusters.

2) Fuzzy association rules are effectively extracted
for each KSDG-SOM node.

An  important  criterion  that  we  impose  for  the
KSDG-SOM growing phase, is the minimization of
the  number  of  genes  in  each  cluster  in  order  to
restrict the search over large spaces. Thereafter, the
mutual  information  metric  with  the  provision  for
incorporating a priori functional classes constructs
highly  appropriate  clusters  for  the  detection  of
fuzzy association rules. 

The  paper  proceeds  as  follows:  Section  2
summarizes the KSDG-SOM algorithm, on which
with  a  few  modifications,  we  build  the  mutual
information based clustering phase. Then at section
3 we  describe  the  concept  of  the  mutual
information distance metric  and its  utilization  for
the  formation  of  clusters.  The  next  section,  first
briefly presents a background on association rules.

Then  we  present  the  association  rule  extraction
algorithms, that are applied locally for each KSDG-
SOM  formed  cluster.  Subsequently,  the  crisp
association  rule extraction  framework is  extended
to  the  fuzzy  domain.  Section  5 presents  and
discusses the results obtained from this two phase
fuzzy  association  rule  extraction  frawework.  The
paper concludes  with  hints  on the many possible
directions on which this research can be continued
and extended. 

2 Summary  of  the  KSDG-SOM
algorithm 

This  section  summarizes  the  Kernel  Based  Self-
Organizing  Map  (KSDG-SOM)   that  forms  the
basis  of  the  mutual  information  based  clustering
framework. This clustering aims to separate small
groups  of  related  patterns  which  the  association
rules  extraction  algorithm  will  focus  in  order  to
reveal association rules. 
Details  of  the  algorithms  of  the  KSDG-SOM
approach are presented in [38].
The  standard  SOM  algorithm  has  a  number  of
properties,  which  render  it  to  a  candidate  of
particular interest as a basis framework for building
more flexible and advanced algorithms for massive
data analysis. SOMs can be implemented easily, are
fast, robust and scale well to large data sets. They
allow one to impose partial structure on the clusters
and facilitate visualization and interpretation. In the
case hierarchical  information is required, it can be
implemented on top of SOM, as in [14].
Recently,  several  dynamically  extended  schemes
have been proposed that overcome the limitation of
the fixed  non-adaptable architecture of  the  SOM.
Some  examples  are  the  Dynamic  Topology
Representing  structures  [15],  the  Growing  Cell
Structures [11,16], Self-Organized Tree Algorithms
[17,8],  the  joint  entropy  maximization  approach
[18] and the Adaptive Resonance Theory [19,20].
The KSDG-SOM approach has some similarities to
these  dynamically  extended  schemes,  from  the
point  of  view  of  its  unsupervised  component.
However,  one  essential  difference  exists:  all  the
forementioned  schemes  are  purely  unsupervised,
lacking a design for the incorporation of problem
domain knowledge. Instead, the KSDG-SOM focus
on the design of such types of algorithms that aim
to explore effectively existing  a priori supervised
class labeling,  for  multi-class  and possibly  multi-
labeled data. The multiple labeling, i.e. the possible
assignment  of  more  than  one  class  label  at  each
pattern,  perplexes the clustering and classification



tasks.  For  many  applications,  e.g.  the  gene
expression  analysis,  the  multiple  functional
labeling of patterns is the rule and not the exception
(e.g.    most  genes  belong  to  more  than  one
functional class).
Also, in contrast to the complexity of some of these
schemes,  the  KSDG-SOM  is  based  on  simple
algorithms that through the restriction of growing
on a rectangular  grid,  can be implemented easily
and the training of the models is very efficient. In
addition, most of the benefits of the more complex
alternatives  of  dynamical  extension  are  still
retained.
We  call  the  proposed  model  KSDG-SOM  from
Kernel Supervised Dynamic Grid SOM, since it is a
model  trained  in  kernel  space  and  although  it  is
SOM based it  tightly integrates unsupervised and
supervised learning components.
As a kernel the Gaussian one is used. The Gaussian
kernel  mapping  implements  more  elaborate  soft
class separation boundaries than the hard separation
onto  Voronoi  regions  obtained  by  evaluating
directly at the input space the inner products of the
patterns  and the prototype vectors.  As  with  other
kernel  methods  [35,39],  we  aim  to  exploit  a
nonlinear transformation of the input space onto a
high-dimensional  feature  space.  Intuitively,  the
SOM  based  learning  constructs  Voronoi  regions
over this high-dimensional space in which the extra
dimensions  enhance  the  possibilities  of  defining
more elaborately the cluster boundaries.
The  KSDG-SOM  has  been  designed  in  order  to
automatically  detect  the  appropriate  level  of
expansion,  so  that  the  number  of  clusters  is
controlled  by  a  properly  defined  measure  of  the
algorithm  itself,  with  no  need  for  any  a  priori
specification. This is quite important for many data
mining  applications where very little (or nothing)
can be claimed about  an  a  priori  estimate of  the
number  of  clusters.  To  fullfill  the  needs  of  the
association  rule  extraction  framework  we  have
performed  slight  modifications  to  the  expansion
phase, in order to obtain cluster sizes in the range
30 to 80 genes, that can be conveniently handled by
the association rule extractor.
Details  on  the  design  and  implementation  of
KSDG-SOM  algorithms can be found in [38]. At
the context of  the present  work,  we augment the
KSDG-SOM  with  powerful  mutual  information
based distance metrics. These metrics automatically
yield pattern clusters that are characterized by the
maximization  of  the  mutual  information  between
patterns of the same cluster and at the same time
the  maximization  of  the  statistical  independence
between genes of different clusters. In addition, the
main advantages of the KSDG-SOM model, i.e. the
dynamic adaptable growing and the potentiality to
account for the a priori functional information are

still retained.

3 Mutual Information 

The mutual information metric has the capacity to
measure  a  general  dependence  among  random
variables. We utilize it in order to identify sets of
patterns  that  more  probably  are  associated.  The
outcome is that the extraction of fuzzy association
rules is performed on a much smaller space making
the  final  problem  computationally  tractable  even
for large pattern sets. 
The  entropy of  a  pattern  is  a  measure  of  the
uncertainty information content in that pattern. For
a  random  vector  X  with  probability

distribution  P X=x i , i=1, , K x  with

K x  the number of possible values of X , the
Shannon entropy  is defined

H X =−∑
i=1

K x
P X=x i ⋅ln P X=x i

Higher  entropy  for  patterns  imply  more  uniform
distribution.  Similarly  the  joint  entropy of  X
and  Y  is  a  measure  of  the  total  uncertainty
contained in X  and Y . It is defined as

H X ,Y =−∑
i=1

K x
∑
j=1

K y
P X=x i ,Y= y j ⋅ln P X=x i ,Y= y j 

where K x , K y is the number of possible values
of  X  and  Y respectively.  The  mutual
information  between X  and Y is a measure
of information about X (or Y ) contained in
Y  (or X ). It is given by:

I X ,Y =H Y −H Y | X =H X H Y −H X ,Y =

∑
i=1

N
x

∑
j=1

N
y

P X=x i ,Y= yi ln
P X=x i ,Y= y j 
P X = x iP Y= y j

(1)
The probabilities of equation (1) are estimated with
the empirical counts as

P X=x i ,Y= yi≈
# x i , y j 

N

P X=x i ≈
# x i
N

P Y= y j ≈
#  y j 
N

The KSDG-SOM partitions  the set  G of  patterns
into k disjoint subsets as G=X 1∪X 2∪∪X k .
The  cost  function  that  the  KSDG-SOM  learning
minimizes  is  defined  as  the  sum  of  pair-wise



mutual information between any two subsets,
cost(Partition)=∑

i≠ j
I X i , X j

where  Partition  denotes  a  particular  partition
scheme. 
This  optimization  is  performed  with  the  KSDG-
SOM learning rules with the mutual information as
the  distance  metric.These  rules  are  described  in
detail in [38].
We should note that the optimization is performed
by the dynamic growing algorithm efficiently but
approximately.  In  addition  the  cost  function  can
easily account for a supervised bias in order to tend
keeping  genes  with  a  priori  similar  functional
classes together onto the same cluster.

4 Fuzzy Association Rules Extraction

For a data set D={ t1, t2, , t n}  with attributes A
and fuzzy sets  associated with  each attribute,  the
purpose of fuzzy association is to detect interesting
and  potentially  useful  regularities.  These
regularities  are  expressed  in  terms  of  fuzzy
association rules of the form: 

if   P={a1 , a2 , , an}  is  V={ f 1 , f 2 , , f m}

then  P '={a ' 1 , a ' 2 , , a ' n}  is

V '={ f ' 1 , f ' 2 , , f 'm}

where f i , f i
'  are fuzzy sets related to attributes

ai , a ' i  respectively  and  P , P '  are  disjoint
itemsets in the sense that they do not share common
attributes.  The purpose is  to detect the interesting
rules, i.e. those that have enough support and high
confidence value. 
The  Apriori algorithm  [1]  computes  frequent
itemsets from  a  set  of  patterns  by  performing
multiple iterations. Each such iteration involves:
● candidate generation
● candidate counting and selection

Exploring the knowledge about infrequent itemsets,
obtained from the previous iterations, the algorithm
prunes a priori those candidate itemsets that cannot
become frequent. After discarding every candidate
itemset that has an infrequent subset, the algorithm
enters the candidate counting step.

However,  the  crisp  association  rules  as  those
extracted by the Apriori algorithm, require a coarse
discretization  of  the  attribute  ranges  to  a  few
discrete  "items".  For  example  for  the  gene
expression  data  application  presented,  each  gene
we use a three-level discretization of the possible
range of values:
a)  Low  expression  values  (i.e.  underexpressed

genes).

b)  Insensitive  (i.e.  genes  not  affected  across
experiments).

c)  High  expression  values  (i.e.  overexpressed
genes).

It  is  evident  that  the  loss  of  information  is
significant. In order to represent intervals with non-
sharp  boundaries,  we  can  utilize  a  fuzzy  set
representation  of  items  for  generating  fuzzy
association  rules.  The  assignment  of  meaningful
linguistic terms to the fuzzy sets makes these rules
very  informative  to  the  human  expert.  For  the
example application of gene expression analysis, a
quantitative  gene  expression  value  vg  is
mapped  to  a  three  dimensional  vector
[μLv g , μ I vg , μH vg]  whose  components

refer to the membership value at the corresponding
linguistic  term  (i.e.  Low,  Insensitive,  High).  We
used triangular membership functions  that consider
each  gene  as  Underexpressed,  Insensitive  and
Overexpressed according to the two-fold and four-
fold changes in expression levels.
For  example  in  Figure  1,  the  Overexpressed
linguistic  variable  starts  assuming  non  negative
values  at  the  two-fold  expression  level  increase
relative  to  the  normal  conditions  and  takes  the
value 1  at  the four-fold change.  Therefore,  genes
that increase their expression by four fold or more
are considered Overexpressed to a degree of one. 

Figure 1 Illustration of the fuzzification of the gene
expression values.

Suppose that we have N  transactions each of  with
n attribute  (item)  values,  a  set  of  membership
functions,  and  a  prespecified minimum support  s
and confidence c. The steps of the fuzzy association
rule extraction algorithm are as follows:

1. Transformation of the quantitative values aij
of each transaction  t i , i=1, , N ,  for  each
attribute  a j , j=1, , n ,  to  a  fuzzy  set

-2 2-4 4

Insensitive
Overexpressed

Underexpressed

fold expression change

membership function value

1

0



μij
k

, that is represented as

μij
1
R j

1
μij

2
R j

2
⋯μij

l
R j

l


using  the utilized membership functions.  Here
R j
k

 denotes the kth  linguistic variable (e.g.

Underexpressed,  Insensitive,  Overexpressed

etc.) of the attribute a j , μij
k

 is the fuzzy

membership  value  for  attribute  a j  at  the

range  R j
k

,  and  l =|a j |  is  the number

of fuzzy partitions used for the fuzzification of
the quantitative values of the attribute a j .

2. Computation of the  scalar cardinality or  fuzzy

count for every region R j
k

of attribute a
j

at the transaction data (consisting of N records)

as count j
k
=∑

i=1

N

μij
k

3. Check  whether  count j
k

 of  each

R j
k
, j=1, , n , is greater than or equal to

the requirement for minimum support  s, and if
so,  insert  the  item  at  the  list  of  frequent  1-
itemsets  ( F 1 ).  Therefore

F 1={R j
k

| count j
k
≥s } for 1≤ j≤n.

The meaning  of  the equation  above is  that  we
include  the corresponding  linguistic  partition  k
for  attribute  j,  at  the  frequent  1-itemsets  if  its

fuzzy  count  count j
k

 fullfils  the  minimum

support requirement. 

4. Set  r=1 , where r represents the number of
items  that  are  kept  in  the  current  frequent
itemsets.

5. Generate  the  candidate  set  C r1  from

F r  in a manner similar to that of the Apriori
algorithm.

6. For  each  newly formed  (r+1)-itemset  R,  with
items R1 , R2 , , Rr1  in  C r1 , do the
following substeps.
(a)  Compute the fuzzy value of each transaction
data  t i  as  μiR=μiR1

∧μiR2
∧∧μiR r1

,

where  μiR
j

 is  the  membership  value  of

t i in region R j.

If  the  minimum  operator  is  used  for  the

intersection, we have 

μiR=
r1
min
j=1

μi R j

At  this  point  we  should  note  that  the  fuzzy
product operation is an alternative choice that
is usually preferable since it better utilizes the
available information:

μiR=∏
j=1

r1

μiR
j

(b) Computation of the scalar cardinality (i.e.
fuzzy support) of R in the transaction data as

countR=∑
i=1

N

μiR

(c)  if count R  is larger than or equal to the

support s then insert R in F r1

7. if F
r1  is null then go to the next step;

else set r=r1 and repeat steps 6-8.

8. Construct the fuzzy association rules for all the
frequent  q-itemsets  R with  items
R1 , R2 , , Rq , q≥2 , using the following

substeps:
(a.)  Form  all  possible  association  rules  as
R1∧Rk−1∧Rk1∧∧RqRk   (1-itemset consequent)

∧for all i Ri ∧for all j R j

i∈Premise, j∈Consequent    (k-itemset consequent) ,k1

for k=1,q.
(b.) Compute the confidence values) of all the
fuzzy  association  rules  as

∑
i=1

N

μi S

∑
i=1

N

μi⋅R1∧∧μi⋅Rk−1∧μi⋅Rk1∧∧μi⋅Rq

  
The numerator of the former equation expresses
the fuzzy support of the whole  itemset  S over
each  transaction  i, μi S .  The  denominator
corresponds to the fuzzy support of the Premise
summed over all the transactions. Therefore, the
equation  quantifies  the  degree  to  which  the
fullfillment of the Premise condition associates
with  the  fullfillment  and  of  the  Consequent
condition.  The  expression  for  the  k-itemset
consequent  ( k1 ),  is  taken  similarly  by
considering items of the premise of Equation 0
at the denominator of Equation 4.

9.  Extract the rules  with confidence values larger
than or equal to the predefined confidence c.



We  should  note  that  we  have  based  the  fuzzy
association  rule  extraction  software  on  the
implementation  of  the Apriori  algorithm obtained
from  the  WEKA  [25]  data  mining  packages
implemented in the Java programming language. In
addition to adapting the algorithm to the fuzzy case,
we  customized  the  code  in  order  to  extract  the
patterns  for  fuzzy association  rules  directly  from
the KSDG-SOM nodes.

5 Results and Discussion  

This  section  first  describes  briefly  the
characteristics  of  the  particular  DNA  microarray
data  analyzed.  Then  we  proceed  with  the
application of the KSDG-SOM for the analysis of
these  data  and  we  discuss  the  extracted  fuzzy
association rules.
We  have  applied  the  KSDG-SOM  to  analyze
microarray expression data from the budding yeast
Saccharomyces  cerevisiae.  These  data  are  public
available  from the  Stanford  web site.  They were
generated  by  studying  this  fully  sequenced
organism with  microarrays,  containing  essentially
every  Open  Reading  Frame (ORF).  The  samples
used were collected at various  time points during
the diauxic shift, the mitotic cell division cycle and
sporulation.  The  data  set  consists  of  80-element
gene expression vectors for 6,221 genes.
The  source  of  these profiles  were  eight  different
microarray experiments under different conditions.
These  conditions  can  be  categorized  into  the
following  four  types:  1.  the  mitotic  cell  division
cycle, 2. sporulation,  3. temperature and reducing
socks,  4.  gene  expression  in  the  budding  yeast
during the diauxic shift.
For  example,  data  for  the  last  condition  were
obtained  from   [29].  With  a  fluorescence-ratio
method,  Derisi  et.  al.   [29] measured the relative
abundance of mRNA for the entire yeast genome,
in yeast growing in a fresh medium to examine the
changes  in  expression  that  take  place  with  the
metabolic  shift  from  anaerobic  to  aerobic
metabolism,  with  seven  samples  taken  at  2-hour
intervals. Measured levels of expression of genes in
this  experiment  reflect  metabolic  reprogramming
that occured during the diauxic shift.
Annotation  for  these genes  was  derived from the
Functional Classification Catalogue of the Munich
information  center  for  protein  sequences  (MIPS)
Comprehensive Yeast  Genome Database (CYGD)
available at
http://mips.gsf.de/proj/yeast/CYGD/db/index.html
Specifically,  we  present  5  from  the  19  top-level
functional  categories  that  include a total  of  1974
genes:
1. Cell Fate (423 ORFs)

2. Cell  Rescue,  Defense  And  Virulence  (273
ORFs)

3. Cellular  Communication/Signal  Transduction
Mechanism (59 ORFs)

4. Cellular Transport And Transport Mechanisms
(480 ORFs)

5. Metabolism (1059 ORFs)
The  gene  expression  data  is  arranged  in  a  table
whose rows correspond to the genes and columns
to  the individual log-transformed gene expression
values of  each gene  in  a  particular  experimental
condition represented by the column. The weighted
K-nearest  neighbors  imputation  method presented
in [30] is applied in order to fill up systematically
the missing values. This data imputation approach
detects the  K most  similar  genes in expression to
the one with missing values and estimates them by
weighting  the  values  of  these  genes  at  the  same
columns with their similarity.

The  snapshots  presented  in  Figures  2  and  3
illustrate  the  Java  based  integrated  software
package  for  gene  expression  mutual  information
based  clustering  and  fuzzy  association  rule
extraction  that  we have implemented. We present
some of  the extracted rules at  the Appendix.  The
format of these rules displays the genes involved at
the  Premise and  those  at  the  Consequence.
Therefore  by  examining  them  we  can  obtain
evidence on some possible gene regulation relations
at  the presented application.  However these rules
should  be  further  elaborated.  Multiple  conditions
either at the Premise or the Precondition are in an
implied conjunctive form. Next to the premise we
present the  fuzzy Support Count, i.e. the sum over
the number of experimental conditions that support
the  association  weighted  by  the  degree  of  this
support.
Finally, the confidence of the rule is displayed next
to the rule. For example, at the rule  

YAL001C=High  and  YAL003W=High  ==>
YAL002W=High      conf:(1)

the  overexpression  of  the  genes  YAL001C  and
YAL003W is associated with an overexpression of
the gene YAL002W. This pattern is observed in at
least  40  of  the  total  80  experimental  conditions
since we require a minimum fuzzy support of 40.
Also the  confidence is 1, i.e. for all the conditions
for  which  YAL001C  and  YAL003W  are  both
overexpressed, we observe also an overexpression
of YAL002W.

Similarly at the rules:

YAL001C=Low  ==> YAL003W=Low
YAL004W=Low     conf:(1) 



YAL003W=Low  ==> YAL001C=Low
YAL004W=Low     conf:(1)
YAL004W=Low  ==> YAL001C=Low
YAL003W=Low     conf:(1)

we   observe  that  the  underexpression  of  the
corresponding  genes  at  the  Premises  (e.g.
YAL001C, YAL003W and YAL004W) is  closely
associated with the underexpression of two genes at
the Consequences. 

The KSDG-SOM growing phase, clusters together
genes according to the mutual information metric,
while at the same time it penalizes a large number
of  genes  in  order  to  avoid  large  cluster  sizes.
Therefore  the  search  over  large  spaces  for
association  rules  is  avoided  and  the  standard
implementation of the fuzzy Apriori algorithm with
a provision for hashing items for fast access works
very  effectively.  In  particular,  we  have  extracted
rules for the whole 6221 gene set of yeast within a
few minutes on a Pentium 4 machine.
The  KSDG-SOM  has  also  the  provision  for
incorporating  a  priori  functional  classes.  This
advantage can be further explored for the restriction
of  the  search  space  for  the  detection  of  fuzzy
association rules. A comparison with the number of
fuzzy  association  rules  found  with  the  Pearson
Correlation  metric  reveals  that  the  mutual
information metric reveals more association rules.
Although,  we  have  not  yet  performed  a  detailed
study,  it  seems  there  is  a  considerable  overlap
between  rules  extracted  according  to  the  mutual
information metric and the Pearson correlation one,
but the former succeeds at the discovery of about
20% more rules, that are probably characterized by
nonlinear associations and thus  remain hidden to
the linear statistical dependence analysis tools (e.g.
the Pearson correlation).
In addition, in order to consolidate the validity of
our results, we constructed 'randomized' data sets,
consisted  of  all  the  expression  values  for  each
transcript in the original data set being shifted with
respect to the values of the other transcripts  by a
random number of  experiments.  The objective of
using  this  randomized  data  set,  is  to  study  how
many association rules would be produced in a data
set with the same values as the original data set, but
in which the data dependencies are destroyed by the
randomization. We observed that at the randomized
data, no association rules are produced with a large
fuzzy support value (more than 60.0). 

6 Conclusions 

We  have  presented  an  approach  to  confront
effectively the difficult  computational  problem of

the  extraction  of  fuzzy  association  rules  for  the
description of pattern dependencies and interactions
from large transaction data.
The  association  rules  that  we  have  discovered
represent  clearly  a  fraction  of  all  the  possible
pattern-to-pattern interactions.  However,  the rules
that  we  have  mined,  represent  a  considerable
number of  non-random patterns  of  interest.  From
those rules, new hypotheses can be stated that could
ultimately be confirmed or rejected on the basis of
specialized  experiments  for  each  application
domain.
We described a two stage approach to the problem
that obtains computationally manageable plausible
solutions. The first stage clusters patterns that more
probably  are  associated.  Therefore  our  approach
integrates the clustering machinery with that of the
fuzzy  association  rule  extraction.  Thereafter,  the
second stage, the fuzzy association rule extraction
algorithm  follows,  confronting  a  significantly
reduced problem.
The clustering phase is accomplished by means of a
Kernel  Supervised  Dynamic  Grid  Self-Organized
Map  (KSDG-SOM).  We  adapted  the  criteria  for
dynamic expansion,  in  order to obtain clusters of
manageable size for the association rule extraction
algorithms. The mutual information metric controls
the development of the KSDG-SOM clusters. This
metric allows the formation of pattern clusters that
maximize the mutual information for patterns of the
same cluster and to minimize it  between different
clusters.
In  addition  the  KSDG-SOM  is  capable  of
incorporating  a  priori  information  for  the known
functional  characteristics  of  patterns.  This
supervised bias on training can focus the model at
the detection of more appropriate rules that exploit
domain knowledge.
After this initial pattern clustering we concetrate on
whether  a  pattern  can  be  explained  properly  by
means  of  the  patterns  of  the  same  node.  Fuzzy
association  rules  are  extracted  for  the  patterns
allocated at the same node.
An  important  criterion  that  we  impose  for  the
KSDG-SOM growing phase, is the minimization of
the number of patterns in each cluster in order to
restrict the search over large spaces. Thereafter, the
mutual  information  metric  with  the provision  for
incorporating a priori functional classes constructs
highly  appropriate  clusters  for  the  detection  of
fuzzy  association  rules.  A  comparison  with  the
number of fuzzy association rules found with the
Pearson Correlation metric reveals that the mutual
information metric reveals more association rules.
Clearly, this "line" of research requires much more
work. Also, the current work will be extended by
considered  more  effective  computationally
algorithms for association rule extraction,  e.g. the



EClat  algorithm  [34]  and  by  further  tuning  the
interface between the mutual information clustering
and  the  fuzzy  association  rule  extraction
machinery.
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