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Abstract: The maximization of the performance of the most if not all the fuzzy identification techniques is usually expressed
in terms of the generalization performance of the derived neuro-fuzzy construction. Support Vector algorithms are adapted
for the identification of a Support Vector Fuzzy Inference (SVFI) system that obtains robust generalization performance.
However, these SVFI rules usually lack of interpretability. The accurate set of rules can be approximated with a simpler
interpretable fuzzy system that can present insight to the more important aspects of the data. The interpretable fuzzy
system construction algorithms receive an a priori description of a set of fuzzy sets that describe the linguistic aspects
of the input variables as they are usually perceived by the human experts. In the case of the interpretable fuzzy sets an
adaptive an algorithm for building them automatically is presented here. After the construction of the interpretable fuzzy
partitions, the developed algorithms extract from the SVFI rules a small and concise set of interpretable rules. Finally,
the Pseudo-Outer Product (POP) fuzzy rule selection orders the interpretable rules by using a Hebbian like evaluation in
order to present the designer with the most capable rules.
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1 Introduction

Support Vector Machine (SVM) are based on Vapnik’s
Statistical Learning Theory [1] and it has recently re-
ceived a lot of attention by researchers in many scientific
fields. The basic reason is that it can be successfully
used in many complex problems [2]. The SVM is an
approximate implementation of the structural risk min-

imization inductive principle that aims at minimizing
an upper bound on the generalization error of a model,
rather than the usual minimization of the mean-square
error over the training set. More recently, a new ap-
proach to the fuzzy identification problem, based on the
SVM, has been developed [9, 10]. This approach offers
a robust framework for fuzzy systems that are able to

generalize effectively [3, 4]. In this work we make use
of algorithms of [9] for the construction of a Support
Vector Fuzzy Inference (SVFI) system. The number of
SVFI rules is then controlled by the extracted support
vectors. The kernel on which the non linear transfor-
mation is achieved is that of the Radial Basis Function.
That is known as a classifier of type SVM-RBF. Com-
parisons with clustering based methods for fuzzy rule
construction [12, 11, 16, 14, 15, 7, 8] demonstrate that
the SVM method has the potentiality of extracting fewer
rules that are usually more suitable for a better gener-
alization [9, 10]. The Ockam’s razor rule applies here.

Although the support vector approach has the po-
tential of generating effective fuzzy classifiers, these clas-



sifiers are derived by a simple recasting of the SVM in-
ference in fuzzy rule terms. The resulting fuzzy system
implements accurately the SVM inference and thus it is
generally quite effective. The interpretation of its rules
by the human experts is not straightforward, since the
rules are defined in terms of the proximity to support
vectors, a concept that usually does not provide an in-
tuitive information to the human expert.

The paper presents a simple but effective set of al-
gorithms for the construction of an approximate inter-
pretable fuzzy system from the accurate SVM-based
one. This approximate system utilizes interpretable ap-
plication specific fuzzy sets defined by the domain ex-
perts. However, in comparison with the SVFI, it ex-
hibits some loss of classification accuracy. This is not
a significant drawback because the SVFI can be used
concurrently for retaining the classification efficiency.
These advantages can be summarized to:

1. The rules are expressed with domain specific fuzzy
sets and thus they can provide direct intuition to
the human expert.

2. It has generally much smaller number of rules from
its ”base” SVFI system and each such rule involves
usually a small subset of the input features. To the
contrary at the SVFI rules every rule consists of
the conjunction of clauses, with one clause of the
form CloseTo for every feature dimension.

3. The approximation accuracy and the complexity
of the interpretable set of rules can be traded off
dynamically by adjusting a set of thresholds.

The paper proceeds as follows:
Section 2 deals with the automatic construction of

interpretable fuzzy sets along dimensions for which the
human experts cannot predefine them easily. Section 3
reviews the Support Vector Fuzzy Inference system and
the corresponding algorithms for fuzzy rule construction
from the trained SVMs. This presentation is based on
the work of [9]. Section 4 concerns the main contribu-
tion of the paper, i.e. the derivation of the interpretable
fuzzy rules from the Support Vector Fuzzy Inference
rules. The results section (i.e. Section 6) presents appli-
cations of the techniques, which deal with both synthet-
ically generated data and real data sets, and evaluates
the performance of the extracted rules. Finally, section
7 concludes the work of the paper.

2 Features with unspecified a
priori interpretable fuzzy sets

The presented approach requires the a priori specifica-
tion of interpretable fuzzy partitions for every feature.
However, frequently, interpretable fuzzy sets for some
features cannot be prespecified by the human experts.
At this case the presented algorithm at this section can
be used to derive automatically a fuzzy partition that
owns interpretability properties.

The interpretable fuzzy set partition construction
algorithm for the feature f proceeds by hierarchically
merging candidate fuzzy partitions according to the fol-
lowing algorithm:

1. Initialization The initial interpretable partition is
defined by the obtained Support Vectors (SVs)
and consists of the coordinates of the l SVs along
the feature dimension f , i.e. l is the initial num-
ber of interpretable fuzzy sets.
Set m = l // m denotes the current number of
interpretable fuzzy sets

2. Hierarchical Merging to obtain K, 2 ≤ K ≤ l

fuzzy sets

while m > K do // merge properly interpretable
fuzzy sets until K remain

* evaluate the criterion Dm for merging fuzzy
sets

* s = 1
* merge fuzzy sets s and s+1, modifying neigh-

boring fuzzy sets
while s < m− 1 do

* evaluate Ds
m−1

* restore base partition
* s = s + 1

end while
* select and store the partition FPm−1 for which:
Dm−1 = argmax(Ds

m−1)
* base partition = FPm−1;
* m = m− 1
end while

The key point for the effective generation of inter-
pretable fuzzy partitioning is the design of the proper
distance metric Dm that will best separate the m fuzzy
sets. A clever design for Dm based on the concepts of



external and internal distances is proposed in [17].

3 Support Vector Fuzzy Infer-
ence (SVFI) learning

This section reviews the framework for Support Vector
Fuzzy Inference (SVFI) proposed in [9]. This method
provides a solid foundation for obtaining generalization
and over-fitting prevention ability. The main contri-
bution of the current work is the construction of a re-
duced set of interpretable rules from the SVFI that pin-
point many interesting aspects of the data set in easily
conceivable representation for the human expert. The
corresponding interpretable rule set does not claim to
maximize the classification accuracy. Its purpose is to
discover important aspects of the dataset and perhaps
to help in elaborating domain specific knowledge. The
rules discussed at the current section are expressed in
terms of the Support Vectors and implement accurately
the SVM inference. Thus, the presented methodology
by utilizing concurrently two sets of rules offers both
interpretability and accuracy.

We proceed by describing the rules that correspond
directly to the SV inference, referred to as the SV-

Inference rules. The SV-Inference rules are extracted
by utilizing the algorithms of Chen & Wang [9]. Since
the presented interpretable rule system is constructed
”on-top” of the SVFI system we present a self-contained
description of these algorithms in order to preserve the
continuity of the presentation and to clarify the close
coupling of the two systems (i.e. the SVFI and the in-
terpretable rule systems).

The general form of the Support Vector Fuzzy In-
ference (SVFI) rules is:

Rule k: if P k
1 and P k

2 and . . . P k
N then ck

where P k
i , i = 1, . . . , N are fuzzy clauses, of the form

xi is CloseToSV(k, i),

that test the membership of the ith ”coordinate”
xi of the input vector x = [x1, . . . , xN ] at the ith
fuzzy set of the kth SV, CloseToSV(k, i). The later
sets CloseToSV(k, i) fuzzify the numerical distance of
the xi input coordinate to the xk

i coordinate of the
kth support vector. A Gaussian function of the form:

µk
i (xi) = exp(− 1

2

(
xk

i −xi

σk

)2

), computes the membership
by quantifying the proximity of the input value com-
ponent xi to the value xk

i of the ith component of the
support vector SVk. Also, the parameters ck are real
constants, i.e. ck ∈ <. We choose product as the fuzzy
conjunction operator, addition for fuzzy rule aggrega-
tion and Center Of Area (COA) defuzzification. The
resulting model becomes a special case of the Takagi-
Sugeno (TS) fuzzy model.

The input-output mapping F′ that the SVFI model
performs and the decision function for classification
problems F(x) can be expressed as

F′(x) =
∑M

k=1 ck

∏N
i=1 µk

i (xi)∑M
k=1

∏N
i=1 µk

i (xi)
=

M∑
k=1

ckRk(x) (1)

F(x) = sgn{F′(x)} (2)

where x = [x1, . . . , xN ]T ∈ <N is the input and M

is the number of rules. Also, N is the number of con-
junctive clauses of the kth rule which is equal to the di-
mensionality of the input vector x and µk

i (xi) computes
the membership of the input variable xi in the fuzzy
set CloseToSV(k, i). The term contributed by rule k to
the numerator of Equation 1 is ck ·

∏N
i=1 µi

k(xi). The
constant ck is derived from the Lagrange multipliers αi

and the training patterns labels yi as: yk = αk · yk.
The relative strength, Rk(x), of the kth rule expresses
how much this rule is involved at the decision for input
vector x and is:

Rk(x) =
∏N

i=1 µk
i (xi)∑M

k=1(
∏N

i=1 µk
i (xi))

=
K

′
(x, zk)
A

=
exp

(
−1
2 ‖

x−zk

σk
‖2

)
A

(3)
where zk = [z1

k, z2
k, . . . , zN

k ]T ∈ RN controls the
location parameters (i.e. the Gaussian centers) of
µk

i , k = 1, . . . ,M , i = 1, . . . , N . The denominator∑M
k=1(

∏N
i=1 µk

i (xi)) attains a constant value denoted by
A. Since the denominator is constant it does not affect
the classification decision and thus we consider equiv-
alent problems, already scaled properly. Therefore, at
the expansion of equation 4 (presented below) we con-
sider only the numerator K ′(x, zk).

The decision rule of the output of the fuzzy system of
equation 1 can be expressed in terms of kernel functions
as:

F (x) = sgn{
M∑

k=1

ckK ′(x, zk)} (4)



The kernel K ′ is a translation invariant kernel de-
fined as K ′(x, zk) =

∏N
i=1 µk

i (xi − zk
i ) and each µk

i

membership function is of the familiar one-dimensional
Gaussian type. In order to implement K ′(x, zk) we
use scaled and shifted Gaussians, therefore K ′(x, zk) =
K ′(‖x− zk‖), where the location, of the Gaussians are
specified with the location vector zk.

The SV learning algorithm constructs a fuzzy sys-
tem with N inputs and M number of rules (one rule for
every SV). The number of rules M is derived after the
solution to the SVM quadratic programming problem.

The M fuzzy rules can be parameterized with a set
of location parameters {z1, . . . , zM} ∈ <N for the Gaus-
sian centers that determine the membership functions
of the if-part fuzzy rules, and a set of real numbers
({c0, . . . , cN} ∈ <) for the constants of the then-part
fuzzy rules.

We implemented an approach similar to one pre-
sented in [9] for the extraction of Support Vector Fuzzy
Inference rules. In order to maintain the compactness
of the presentation we formulate below the algorithmic
format of the Support Vector Fuzzy Inference (SVFI)
learning based on the original work of [9].

Algorithm for SVFI fuzzy classifier identifica-
tion

1. Construct a classification SVM from the train-
ing data to get a decision boundary in the fea-
ture space F of the form f(x) = sgn(

∑
i∈S yi ·

αi ·K(x,xi) + b0) where S is the set of obtained
support vectors. Also K is the Gaussian Mercer
kernel. This kernel defines implicitly a nonlinear
mapping Φ from the input space X to a kernel
induced feature space F .

Assign a suitable value to the regularization pa-
rameter C, and solve the corresponding quadratic
program to obtain the Lagrange multipliers αi and
a suitable value for the constant bias term b0. Ef-
fective algorithms for training SVMs [13] can be
readily utilized at this stage.

2. Extraction of fuzzy rules from the SVM decision
rule:
r ←− 0 // r indexes the rule under construction
for i = 1 to l // all training samples l

if αi > 0 then // training samples i with
Lagrange multipliers αi > 0 are support vectors

r ←− r+1 // one more rule correspond-

ing to the current SV will be constructed
zr ←− xi // the location parameter zr

for rule’s r membership functions is the support
vector xi

cr ←− yiαi // the value of the single-
ton type output fuzzy set for rule r

We denote by x = [x1, x2, . . . , xN ] the fea-
ture values of an input vector x and by zr =
[zr1 , zr2 , . . . , zrN

] the corresponding feature values
of the support vector r. The constructed fuzzy
rule takes the form:
if CloseToSV(x1, zr1) and CloseToSV(x2, zr2)

and . . . and CloseToSV(xN , zrN
) then y is cr

Compute the weight of rule r as: wr ←− αi //
the magnitude of the Lagrange multiplier signifies
the importance of the corresponding rule

end if
end for

4 Interpretable rules

Linguistic rule extraction is a very important issue
within Knowledge-Based Neurocomputing. Support
Vector Machines as well as the equivalent SVFI sys-
tem interpolate relatively easily large sets of data and
provide a means for effective generalization.

However, the SVFI approach has the following basic
drawbacks:

• The SVFI rules are formulated with fuzzy sets de-
fined in terms of the feature coordinates of the
support vectors (i.e. the CloseToSV() fuzzy sets).
These later sets usually do not have a particular

meaning to the human expert.

• For problems with large input feature space di-
mensionality N the obtained rules involve N con-
junctive clauses and it is very difficult to compre-
hend them intuitively.

• When the number of support vectors becomes
large the corresponding large SVFI rule base im-
poses additional interpretability problems.

Therefore, the derivation of interpretable and com-
prehensible to the human expert fuzzy rules from the
SVFI rules is a very important task since it offers the
potentiality for a readable and intuitive knowledge rep-
resentation. The presented framework constructs rules



that are expressed in terms of concepts that the human
expert can understand easily. We develop a completely
novel and effective framework for the extraction of in-
terpretable rules from the SVFI when the interpretable
fuzzy sets for a feature can be prespecified by the human
expert.

The presented framework performs an Interpretable
Fuzzy Set (IFS) approximation to the SVFI system with
one based on a priori specified interpretable fuzzy sets.
Specifically, for each feature dimension f the domain
expert can define a set of interpretable fuzzy sets that
are meaningful. For the particular application domain.
For example at a medical diagnosis application, for the
ArterialPressure feature, fuzzy sets such as VeryLow,
Low, Medium, High, VeryHigh can offer direct interpre-
tation and intuition. Clearly, according to the applica-
tion domain of interest, we have to decide on the fuzzy
set types for the interpretable fuzzy sets (e.g. triangle
shaped, trapezoids, Gaussian etc.) and on their names
(proper names improve the readability of the extracted
interpretable rules). At the system we have developed,
a graphical Java interface allows the user to define con-
veniently these characteristics of the fuzzy system.

After the explicit definition of domain specific fuzzy
sets the task of generating fuzzy rules that are expressed
in terms of these sets from the SVFI system is com-
pletely computational and proceeds without the inter-
vention of the human expert.

For a support vector sv with scalar value svf , svf ∈
<, for its feature dimension f , the degree of member-
ship µIFSf,i

(svf ), of svf at every Interpretable Fuzzy
Set IFSf,i of feature f , is evaluated. Since the em-
phasis is on obtaining a small set of interpretable and
comprehensible rules we keep as a candidate for clause
generation involving feature f only the interpretable
fuzzy set at which svf obtains the maximum member-
ship, denoting it as IFSf,max. We consider the case
that svf is ”sufficiently within” the interpretable fuzzy
set IFSf,max of feature f , i.e. µIFSf,max

(svf ) > β,
where β ∈ < is a threshold parameter. At this case, for
the CloseTo(xf , svf ) fuzzy clause constructed with the
SVFI algorithm of Section 3 we create an approximate
interpretable fuzzy clause in terms of IFSf,max. The
threshold parameter β determines the number and the
quality of the derived rules. Clearly, with larger thresh-
olds we construct fewer rules but of better quality.

The membership values µIFSf,max
(svf ) are used to

compute a measure of the accuracy with which the orig-
inal SVFI rule is approximated. Specifically, for a pos-

sible interpretable rule r extracted from the support
vector sv we define a Support Vector Rule Similarity

(SV RSr) parameter as:

SV RSr =
N∏

f=1

µIFSf,max
(svf ) (5)

N is the dimensionality of sv. Thus, the SV RSr param-
eter for an interpretable rule r is defined as a product
of the similarities of all the interpretable clauses and
the corresponding SVFI clauses (i.e. the parameters
µIFSf

(svf )). The product is justified by the conjunc-
tive structure of the rules.

The construction of the ”then” part and therefore
of the class label of the rules is straightforward and de-
pends on the sign of the cr parameters that constitute
the ”then” part of the SVFI rules. The cr parameters
are computed with the SVFI algorithm presented in Sec-
tion 3. However, a bit more technical is the extraction
of information for the strength of each interpretable rule
from the SVFI training results. To accomplish this, we
detect the minimum and maximum values of the values
cr = yr · αr, cr ∈ <. According to the Support Vector
Machine theory [5], the range of cr values depends on
many factors, e.g. the specific problem, the particular
training set, the RBF-SVM parameters C (complexity
regularization parameter) and σ (spreading of Gaussian
centers parameter) etc. Although, in absolute terms the
cr values do not have a particular meaning, their rela-
tive magnitude indicates the ”weight” (or significance)
of the corresponding rule. Therefore, an additional rule
pruning step can be performed by avoiding to consider
those SVFI rules that do not contribute significantly ei-
ther for the positive or the negative class.

As a particular example, one rule with cr = 0.8 is
a ”weak” one if the class range is [−31.7, 35.2] since it
affects slightly the classification but the same rule is a
”strong” in favor for the positive class one if the class
range is [−0.8, 0.9]. Therefore, in order to obtain ef-
fectively the ”weight” wr of each rule r, we detect the
minimum and maximum values of the class range (i.e.
values cr) and we normalize this range to [−1.0, 1.0].
The normalization unbiases the weight parameter from
the range of cr values. This ”weight” parameter corre-
sponds to the strength of the corresponding rule at the
SVFI system.

Recapitulating, the weight parameter wr quanti-
fies the classification strength of the SVFI rule, while
the formely described Support Vector Rule Similarity



(SV RSr) parameter, the accuracy of its interpretable
rule ”version”. Thus, the multiplication of the weight
parameter wr with the parameter, SV RSr, adjusts the
weight of the interpretable rule considering also the ac-
curacy of the interpretable rule in representing the origi-
nal SVFI rule. We denote the combined quality measure
for each interpretable fuzzy rule r as Significancer, i.e.

Significancer = wr · SV RSr (6)

A useful concept, especially for high dimensional
datasets, for the reduction of the syntactic complex-
ity of the interpretable rules is the one of the default

interpretable fuzzy set. At the frequent case where a
variable most often attains the highest memberships to
a particular fuzzy set, that fuzzy set can be treated as
the default interpretable fuzzy set. Clauses expressed
in terms of the default interpretable fuzzy sets are not
displayed explicitly at the representation of the inter-
pretable fuzzy rules. For example, since most genes
at a gene expression expreriment are not affected sig-
nificantly by the experiment’s condition, the linguistic
variable ”Unchanged” can be implicitly assumed for all
genes not appearing at the clauses of an interpretable
rule.

Frequently, we can specify easily interpretable fuzzy
sets for many input feature dimensions. For example,
at a gene expression analysis experiment with normal-
ized data where −1(+1) is the maximum underexpres-
sion (overexpression) and the value 0 (zero) corresponds
to absolutely unaffected genes, we can specify a vari-
ety of fuzzy sets according to our apriori knowledge.
However there can exist features for which interpretable
fuzzy sets, cannot be a priori specified. At these cases
we can simply ignore the corresponding feature dimen-
sions at the rule extraction. Alternatively, for those
features, data-driven interpretable fuzzy rule extraction
algorithms like the hierarchical fuzzy partitioning algo-
rithm proposed in [17] can be utilized.

Below we recapitulate the interpretable fuzzy system
construction algorithm in pseudocode format. We recall
that the main idea is to replace each of the SVFI clauses
CloseToSV(xf , zrf

) by FuzzyLinguisticVariable(xf ,

zrf
) if the feature dimension f of the support vector zr

(i.e. zrf
) attains a sufficiently high maximum member-

ship µFf,max
(zrf

) at the FuzzyLinguisticVariable fuzzy
set Ff,i.

Algorithm: Extraction of interpretable rules
from the SVFI rules

// Notation:
// zr, zrf

: the location parameter of the rth support
vector
// and the corresponding feature coordinate f of zr

// xf : the input value for the f feature
interpretableClauses = {};
ruleSupport = 1.0;
for all the features f of the support vector zr do
// replace the clause CloseToSV(xf , zrf

) with a possi-
ble interpretable clause
for the interpretable fuzzy set Ff,max of the fth feature
variable for which zrf

obtains the maximum member-
ship
(e.g. for the interpretable fuzzy sets HighExpression,

LowExpression a value 0.9 will attain maximum mem-
bership at the HighExpression set)
if µFf,max

(zrf
) > β then

// β is the formely described threshold parameter
/* the support vector feature value zrf

attains enough
membership to the interpretable fuzzy set Ff,max, thus
concatenate the new clause */
if Ff,max is not the default fuzzy set then

interpretableClauses = interpretableClauses and
(xf is Ff,i )
(e.g. xf can be a gene named BRC (i.e. Vk ≡ BRC)
and the newly added clause can be: BRC is HighEx-

pression)
// compute a measure of how much the new inter-
pretable rule is supported by the SVM inference rule

ruleSupport = ruleSupport*µFf,max
(zrf

)
endif;
else
/* if even one conjunctive clause cannot have a satis-
factory approximation with an interpretable fuzzy set
(the default set included) the whole Support Vector rule
cannot derive an interpretable rule */
interpretableClauses = {};
return null

end else;
end for;

if interpretableClauses != null)
/* interpretable clauses exist, construct the ”then” part
of the potential interpretable rule that will correspond
to the support vector. This construction proceeds by
first deciding if the possible rule is sufficiently significant
by using the relative magnitude of the Lagrange multi-
plier. For the positive case we derive the ”then” part



as Class = ”Positive” if the corresponding bi = αi · yi is
≥ 0 and Class = ”Negative” at the opposite case. */

5 Pseudo-Outer Product Evalua-
tion of the interpretable rules

Another approach for data-driven construction of fuzzy
rules is based on Hebbian like learning [2] and is re-
ferred as the Pseudo Outer Product (POP) rule. This
approach evaluates the compatibility of all the possible
rules with the training data and keeps the most promis-
ing ones. Specifically, for evaluating the compatibility
of a candidate rule with a training pattern both the
rule’s premise and the rule’s consequence truth values
are evaluated at the specific data of the training pattern.
The larger the product of these truth values is, implies
that the better the rule in explaining the corresponding
training example is. This evaluation is averaged over
the training examples, with explicit provision to avoid
considering the noisy ones.

However, the pseudo outer-product (POP) rule iden-
tification used in the family of pseudo outer product-
based fuzzy neural networks (POPFNN) suffered from
an exponential increase in the number of identified
fuzzy rules and computational complexity arising from
high-dimensional data [18]. This decreases the inter-
pretability of the POPFNN in liguistic fuzzy model-
ing. This is alleviated with the improved approach of
[21] that proposes a Rough Set-based Pseudo Outer-
Product (RSPOP) algorithm that integrates the sound
concept of knowledge reduction from rough set theory
with the POP algorithm. This algorithm performs fea-
ture selection through the reduction of attributes and
also extends the reduction to rules without redundant
attributes.

Adopting a different view we confront also effectively
the same concerns by using the interpretable SVFI that
avoids the exponential increase of the number of rules.
Clearly, the number of rules is bounded by the number
of SVs (usually is much smaller). The feature selection
of the POP approach [23] is performed by adjusting the
structure of the fuzzy neural network by deleting invalid
feature inputs according to the identified fuzzy rules.
In contrast, we design a feature selection that focuses
at the features with significant interpretability in terms
of the specified interpretable fuzzy sets. However, al-
though the RSPOP approach yields simpler and thus
more interpretable fuzzy systems, the intuitive context

of the extracted rules remain unclear. At the context of
the current work, we utilize also the POP rule in order to
evaluate the effectiveness of the extracted interpretable
rules.

The objective of the Pseudo-Outer Product (POP)
rule evaluation phase is to compute the degree with
which each derived interpretable rule is supported by
the training set. The POP evaluation phase computes
for each training pattern the degree antecedentRuleFir-

ing with which the antecedent part of an interpretable
rule fires.

Denote by antecedentRuleFiring this degree. Sub-
sequently it checks whether the predicted class aggress
with the actual class of the training pattern. If so, it
adds the computed antecedentRuleFiring to the total
score over the training set, otherwise it subtracts it.

6 Results

At this section we demonstrate the potentiality of the
presented interpretable rule extraction algorithms from
the SVFI systems with two examples:

1. The exact discovery of the XOR boolean function
from synthetic data derived from a continuous do-
main XOR like functional.

2. The approximate uncovering of fuzzy rules that
implement a simple gene regulation network, from
data generated by sampling the original fuzzy
rules.

Since the SVFI system implements accurately the RBF-
SVM classification decision function, all the results con-
cerning the generalization potential of the RBF-SVM
[1, 5] are valid, and thus we do not elaborate on them.
Instead we focus on the results obtained from the inter-
pretable fuzzy rule extraction subsystem.

6.1 XOR-Data: Exact discovery of the
XOR boolean function

In order to implement a simple test for the fuzzy rule
extraction system, an XOR decision system is used
as a first example. XOR is the well known logical
(i.e. boolean) function that with two logical variables
x1 and x2 as inputs it produces output y = 1 when
(x1 = 0, x2 = 1) or (x1 = 1, x2 = 0) and y = 0 when
(x1 = 1, x2 = 1) or (x1 = 0, x2 = 0). Even though the
rules are boolean, we desire to extract such boolean logic



from numerical data. Thus, for the XOR learning prob-
lem we use numerical data obtained from the function
y = −x1 · x2. Clearly this function evaluates precisely
the logical XOR for the numbers -1 and 1 considering
them as false and true respectively. The other values of
the output are classified as false or true depending on
the sign of y, i.e. false for the negative sign and true for
the positive one. We generated 50 examples by produc-
ing uniform random values for x1 and x2 at the range
[−1, 1], computing the corresponding y = x1 · x2 and
outputing as class label the sign of y (i.e. sgn{y}).

We have derived a SVFI system with 8 rules, one rule
for every one of the 8 support vectors constructed by
the RBF-SVM learning algorithm. However these rules
do not reveal anything about the continuous XOR-like
function that underlies the production of the synthetic
data. On the contrary, the derivation of interpretable
rules from the SVFI rules clearly uncovers the XOR log-
ical rules.

6.2 Blind discovery of fuzzy rule sys-
tems

In order to test the efficiency of the interpretable SV-
based rule extraction approach we conducted experi-
ments with synthetic data generated by randomly sam-
pling the operation of known fuzzy rule systems. The
objective is to test the efficiency of the algorithms at
uncovering the fuzzy rules from which the data were
generated, by using only the data samples without any
a-priori knowledge about the data generating rules.

We use a simple gene regulation network as the gen-
erator of controlled synthetic data for training. The
small gene regulation example consists of three genes
treated as variables that receive continuous values at the
range -1 to 1, with -1 meaning totally underexpressed
(”Low”), 0 totally unaffected by the experiment and 1
totally overexpressed (”High”). The continuous range
of values between these extremes fuzzifies the concept
of gene expression, as usually, e.g. a value of 0.8 for
one gene signifies larger relative expression level at the
particular experiment from a value of 0.7. The GEn-

chancer is an enhancer gene i.e. one that its expres-
sion enhances the level of expression of the control gene
GControl. Similarly, the GRepressor gene is a suppres-
sor gene for GControl, i.e. its expression tends to block
the expression of the control gene GControl.

We generated training data sets by randomly sam-
pling the input variables GEnhancer and GRepressor

(taking about 50 samples). Consequently we conclude
at the value of GControl variable by evaluating the fuzzy
rule system. In order to treat the learning task as an
SVM classification problem we discretize the positive
cases of the outcome GControl to 1 (i.e. overexpres-
sion) and the negative one to -1 (i.e. underexpression).

Although the system has not discovered exactly the
original rules, the functions of the Enchancer gene and
the Repressor one with respect to the control gene
GControl are revealed.

7 Conclusions

With this work, an extension of the work of [9] by build-
ing interpretable fuzzy-rule systems on top of the SVFI
algorithms is proposed in [9].

The algorithm runs in two phases. During the first
phase, the SVFI framework of [9] is utilized as a disci-
plined method for the generation of fuzzy if-then rules
from the training data that is capable of achieving re-
markable generalization performance. Concerning ap-
plications that involve high-dimensional feature spaces,
Support Vector Machine (SVM) can work very effec-
tively at a high (or even infinite) dimensional feature
space. Since the constructed Support Vector Fuzzy In-
ference (SVFI) system can mimick with high accuracy
the support vector machinery it owns all of its general-
ization efficiency.

On the other hand SVFI system doesnt exhibit the
desired property of interpretability and cognitive mean-
ing to the human experts domain. During the second
phase, we extract another set of rules by examining the
structure of the SVFI rules. At this phase we take as
an a priori ”bias” an approximate specification of the
fuzzy sets that the human experts consider as relevant
to the application domain of interest. The derived set
of rules at this stage although is not as powerful as the
SVFI system, can still offer very useful insight to the
structure of the data. The constructed rules tend to be
meaningful, since they are stated in terms of the fuzzy
sets defined by the domain experts. Concise rules that
highlight aspects of the data generation process can also
be revealed.

To sum up, the presented interpretable rule extrac-
tion algorithms from the SVFI systems reveal a strong
potential which can easily be justified by the following
two examples:



1. The revealing of fuzzy rules that implement a sim-
ple gene regulation network, from data generated
by sampling the original fuzzy rules.

2. The discovery of useful and simple rules from a
real gene expression dataset concerning cancer tis-
sue classification.

The evaluation of the generalization performance of
the interpretable rule systems and the corresponding
performance degradation relatively to the SVFI system
was presented here. It was shoen that the performance
strongly depends on the particular interpretable fuzzy
partition defined by the domain expert. Additionally,
we evaluated the interpretable rule basis performance
parameters, i.e. the coverage and the precision of the
rules. The implementation of the algorithms was done
in the Java programming language (SUN-JAVA) with
the help of the LibSVM library as the base implementa-
tion of the Support Vector Learning [13]. Both the con-
structed accurate fuzzy system, and the interpretable
approximations can be analyzed and evaluated with a
fuzzy expert system inference engine implemented in
Java. Future work continues with the elaboration of
the interpretable fuzzy system construction with algo-
rithms that adapt the interpretable membership func-
tions in the spirit of [11, 12]. The code is available upon
request from the corresponding author.
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