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Abstract: - Photogeneration in the intrinsic region of a p-i-n device excites carriers in the conduction bands with 
non-zero currents. A special class of multi-quantum well photovoltaic structures (mqw-PV) is p-i-n PV structures 
where photo-generation may cause tunneling and or thermionic escape, from the intrinsic region. In this 
communication, we propose a formalism of tunneling versus thermal escape in p-i-n mqw-PV structures. The 
concept is a superlattice embedded in the intrinsic region of a p-i-n solar cell, which under illumination generates 
free carriers for current collection. We show that quantum size effects do matter in these devices and we compute 
the corresponding short circuit currents. We conclude that thermal and tunneling currents behave almost in a 
complimentary way: tunneling  dominates at low temperatures and that thermal escape dominates at high 
temperatures. We report results at temperature levels (two extremes at -10and 100oC) and predict total current 
density values near an average of 60mA/cm2. We finally conclude that the main drawback of these devices is their 
compromised open circuit voltage. 
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1   Introduction 
Periodic heterostructures (superlattices) offer 
immediate advantages over their counterparts, 
especially in the area of solar cells. The existence of 
a superlattice in the intrinsic region of a p-i-n solar 
cell ensures (a) photo-carrier acceptance and (b) 
higher rate of carrier escape than rate of carrier losses 
(via recombination mechanisms). Excited carriers 
from the valence bands of the materials involved may 
gain sufficient energy from incident photons, and 
they may escape to the conduction bands. The latter 
are of two types; wide gap and low gap. Such an 
existence leads to the formation of quantum wells, 
where discrete energy levels are susceptible to carrier 
trapping at the eigen-energies. In realistic devices 
today, the maximum number of discrete levels is no 
more than two (III-V alloys of GaAs/AlGaAs). 
Appropriate choice of quantum well width may lead 
to only one energy level in each quantum well. The 
same picture is true for holes generated in the valence 
bands: they do get captured in their respective wells 
(for holes) and they abide by their own mini-band 
energies. The result of carrier photo-generation is the 
widening of the optical gap, in other words, the 
energy gap allows more incident wavelengths 

(shorter) to be absorbed by the device. This is a direct 
advantage of superlattice design, since multi-gaps 
offer wider acceptance of wavelengths. On the other 
hand, electrons may escape to the conduction band 
and become useful current, mainly due to pre-
existing electrostatic fields that span the totality of 
the intrinsic region. Thus electrons, once free above 
the mid-region, are free to travel to the n-side of the 
device. In the process, they may encounter 
minimized collisions, simply because of the absence 
of impurity scattering (due to low doping). The aim 
of this work is to examine the two main current 
components and depict their behavior with 
temperature.  
 Tunneling currents are possible only via the 
potential barriers formed between neighboring cells. 
A cell is a complete superlattice period that includes, 
a quantum well confined between two adjacent 
potential barriers (wide gap material). A cell could be 
seen as a well and a barrier unit successively 
(periodically) repeated along the span of the intrinsic 
region. As long as the wide gap layers are thin, 
electrons may tunnel through the “walls” and thus 
may travel through the total intrinsic region. At high 



temperatures, electrons accumulate more kinetic 
energy and thus they are prone to escape from the 
wells, rather than to tunnel. On the other hand, for 
thick potential barriers, thermal escape becomes the 
only way out of the wells, particularly at high 
temperatures. Another advantage of superlattice in 
the intrinsic region of p-i-n solar cells is the effective 
mass separation. Once a carrier is in the quantum 
well, it has a finite probability either to recombine 
(lost) or to escape.  
 However, even in the case of escape, there is a 
chance for the carriers to recombine when they are 
above the wells, in the conduction band. In this 
situation, effective mass separation occurs.  Electrons 
and holes with different mobility values in the crystal 
separate immediately. This is a further advantage, 
because electron-hole pair separation contributes to 
current increases.  
 
 
2   Tunneling Currents 
Transport along the growth direction is feasible. This 
is so because confined electrons in the quantum wells 
have a finite probability to tunnel through the 
potential barriers. Thus, perpendicular transport is 
possible in these structures. In addition, quantization 
of energy levels in the wells leads to mini-band 
formation and optical gap widening, by greater 
wavelength absorption.  In other words, shorter 
wavelengths are absorbed, and thus a wider spectrum 
of photons is possible. One may evaluate tunneling 
current densities through potential barriers via a first 
principles method. Under photon illumination levels  
(with absorption coefficient α) Gph, the net tunneling 
currents are the difference of carrier transport from 
left to right and from right to left. Thus, the tunneling 
current is [1]: 
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Where g(E) is the density of states available for 
confined carriers in the quantum wells in units of eV-1 
cm-2 (2D-DOS), P(E) is the tunneling probability 
(assuming no inter-band hopping). f(E-EFL) is the 
Fermi-Dirac distribution, by which the carriers are 
abiding in any system with quantum size effects 
(with explicit dependence on the quasi-Fermi level of 

the left side of the device), 
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f E + qVoc " EFR( )  is 
the Fermi probability at the right side of the device 
(at the edge of the n-region). At the right side, the 
energy increases by the open-circuit voltage energy 
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qVoc
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velocity of carriers 
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function of conduction band discontinuity, eigen-
energy and carrier effective mass.  
 The tunneling probability is: 
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Where the unit-less factor kb is the barrier-related 
wave number 
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and Lb is the potential barrier width. 
 The Fermi-Dirac probability includes the quasi 
Fermi level of the left side of the device (at the end 
of the p-region). In (1), Α is the cross section of the 
device, τ is the relaxation time of the carriers, and Li 

is the intrinsic region length. The first integration in 
(1) covers the intrinsic region (from 0 to Li), and the 
second integration allows for possible trapped 
energies in the quantum wells. The energy 
integration includes energy values within the 
bandwidth of the minibands in the quantum wells. 
Typically, III-V photovoltaic devices with quantum 
wells in the intrinsic region contain at most two 
energy levels. Under an appropriate choice of width 
of the quantum wells, these energy levels may reduce 
to only one in the well and the second one at the edge 
of the quantum well and conduction band continuum. 
The Fermi factor, after some manipulation, becomes: 
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Note also that, the Fermi levels split by an amount 
equal to the open circuit voltage.   Via (2) and (4), (1) 
leads to the following explicit tunneling current 
formula [1, 2, 3]: 
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Note in (5) the term qVoc. This is the open circuit 
voltage and is equal to the difference between the 
quasi-Fermi levels in the device. Under dark 
conditions the quasi Fermi levels coincide along the 
structure due to the fact there is no net carrier 
population drifting across the device. However, 
under illumination with absorbable wavelengths, 
excess carriers do develop that cross the device along 
both directions (left to right and in reverse). If the 
solar cell is open-circuited, a non-zero voltage 
develops at the external leads of the cell: the open 
circuit voltage. For any solar cell, the total current is 
simply a diode current of the type: 
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Where the last term is the short-circuit current 
density. Under open-circuit conditions (ideality 
factor equal to one) the total current of the cell is 
simply zero, hence: 
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From (6), a dependance of the short circuit current on 
open circuit voltage is clear: 
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The total current contribution is the superposition of 
all current components in the cell.  These are the 
tunneling currents, the thermal currents and the 
excess-carrier currents. Evaluation of all three 
components may lead to computations via (8) of the 
open circuit voltage of any p-i-n cell with a 
superlattice in the mid-region.  
 
 
3   Thermionic Currents 

Thermal currents due to electrons escaping from the 
quantum wells are: 
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The last term in the integral ensures non-tunneling 
(recall that P(E) is the tunneling probability). The 
limits of the integration are from the lowest miniband 
to infinity (deep in the conduction bands of both 
layers involved). Expression (9) becomes as follows: 
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Where the pre-factor is: 
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The energy difference in (10) is 
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well 
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E
c1( ) . Hence, the thermal currents will become 

explicitly dependent on the position of the Fermi 
levels relative to the wide gap layer and the 
conduction band discontinuity as follows: 
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Where, the last term is the ratio of the effective 
density of states and the doping of the wide gap 
layer, and where Eg2 is the energy gap of the wide-
gap material (AlGaAs).  
 
 
4   Excess Carriers 
Collection of carriers (during illumination) occurs in 
the n-region of the device as well. Minority holes are 
generated in the n-region, and hence minority hole-
currents will develop from there as well. Thus, if δpn 



is the density of excess holes diffusing in the n-
region, then [5]: 
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Expression (13) is the diffusion equation for excess 
holes in the n-region of the device. Lp is the diffusion 
length of these holes. The double prime indicates the 
second derivative of the excess holes in the region; 
the exponential factor includes all values of x in the n 
region and beyond the i-region respectively (the point 
x = 0 is at considered to be at the interface between 
the p- and i-regions).  The corresponding hole-
current is found from (13): 
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The diffusion length for holes in GaAs systems vary 
from 2.96 to 3.6 µm at temperature ranges from -10o 
C to 100oC.  
 
 
5   Total Current 
The total short-circuit current density is the sum of 
the tunneling and thermal current densities, as found 
in the previous sections. Table 1 depicts the results 
for thin quantum well layers in a solar cell device at 
two temperatures, -10 oC and 100 oC. 
 
Table 1: Short circuit current of a p-i-n cell. Three 
different contributions are depicted along with the 
total current density [1]. 
Jsc (mA/cm2)  

+100oC 
 

-10oC 
JTH 52.78 14.20 
JTU 6.92 42.94 
Jp 2.26 2.17 

JTotal 61.96 59.31 
 
Short circuit currents are depicted at Table 1 above. 
It becomes clear that thermal currents are dominating 
at high temperatures, and tunneling currents are 
dominating at low temperatures. Total currents seem 

to be in the same order (given that numerical 
instabilities are unpredictable). From the same Table, 
one may conclude that tunneling currents are 
dominant at low temperature environments (as in 
outer space applications), while they are rather 
insignificant at relatively high temperatures (hot 
summer days at ~400C). Minority hole-currents do 
not seem to be seriously affected by temperature, as 
seen in the same Table. Their level remains the same 
(2.26 and 2.17 mA/cm2). Notice also that the 
tunneling current increases almost by a factor of 
seven from low to high temperature, while the 
thermal component reduces by a factor of almost 
four. It seems (as seen from the results of Table 1) 
that superlattices in the intrinsic region of p-i-n 
devices offer the obvious advantage of really high 
short circuit currents. The likely values of the open 
circuit voltage can be obtained from expression (8): 
 

! 

Voc =
kT

q

" 

# 
$ 

% 

& 
' ln 1+ Jsc J

s( )[ ]             (8’) 

 
For short circuit currents at 60mA/cm2, reverse 
saturation currents 10-7 mA/cm2 (a cell 1x1cm2 is 
considered), expression (8) at 1000C yields open 
circuit values equal to 0.646V, and at -100C, the 
voltage values are at 0.460V. It becomes obvious 
then that superlattices do cause high short circuit 
currents but their response is rather compromised on 
the output voltage. A more comprehensive study of 
explicit current dependence on temperature is under 
way.  
 
 
6   Recombination Issues 
What is the role of recombination in the process of 
photogeneration? In thermal equilibrium, generation 
rates are equal to recombination rates. When thermal 
equilibrium is disturbed, direct recombination rates R 
may be expressed as follows: 
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Where, n and p are the total electron and hole 
concentrations (including the equilibrium and the 
excess concentrations). At thermal equilibrium, 
recombination rates are: 
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Thus, 
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Ro is found to be of the order of 10-5 cm-2 s-1 and the 
concentration of electrons in the quantum wells is of 
the order of 1012 to 1014 cm-2, so that the total 
recombination does not seem to exceed 1012 cm-2 s-1, 
and has no real effect on photo-generation under 
incident flux levels at 1017 photons per area per time 
(cm-2 s-1).  
 
 
7   Conclusions 
Superlattices in the intrinsic region of p-i-n solar 
cells are promising probes for better cell performance 
[6, 7, 8, and 9]. This is clear from out calculations of 
short circuit currents. In this communication we 
propose incorporating a superlattice in the i-region of 
a solar cell. A superlattice provides a multiplicity of 
quantum wells where photogenerated carriers are 
trapped and subsequently escape via two routes: (a) 
tunneling and (b) thermionic escape. Both of these 
processes of escape are found to compete in carrier 
escape and final current collection. The first one 
(tunneling) dominates at the low temperature limit, 
while the second current component dominates at the 
high temperature limit. We attribute this split in roles 
to the fact that at high temperatures the photo-excited 
carriers have high thermal velocities and hence 
higher kinetics (kinetic energy). This provides a lead 
to thermal currents. With the same token, at low 
temperatures, the kinetic energy of the carriers 
reduces dramatically, and tunneling is more likely to 
happen. On the other hand, under low doping levels, 
phonon scattering (and impurity scattering) inhibit 
tunneling dramatically. We compute the 
contributions of both currents and find that the total 
current of the cell (short circuit current) finalizes in 
the neighborhood of 60mA/cm2 (see Table 1).  We 
find that thermal currents reduce by a factor of seven 
from the high to the low limit of temperature, while 
the tunneling current increases by a factor of four 
from low to high temperature. We also find that these 
structures lack in voltage: the generated mediocre 
open circuit voltages, a rather serious flaw in their 
overall performance.  
 
 

2  References 
[1]  E. Aperathitis, AC Varonides et al, Solar 

Energy Materials & Solar Cells 70, (2001) 49. 
[2]  SM Sze, Physics of Semiconductor Devices, 

Wiley 1981. 
[3]  F. Capasso, et al, Appl. Phys. Lett. 47, 420 

(1985) 
[4]  A.C. Varonides, Physica E 14, 1-2, 142 (2002). 
[5]  ES Yang, Microelectronic Devices, Mc-Graw-

Hill, New York, 1988. 
[6]  E. Aperathitis, A. C.  Varonides, et al, Solar 

Energy Materials & Solar Cells 70, 49 (2001). 
[7]  A.C. Varonides, Physica E 14, 1-2, 142 (2002). 
[8] AC Varonides, Computational  Methods in 

Circuits and Systems Applications, N.E. 
Mastorakis, I.A.  Stathopoulos, C. 
Manikopoulos, GE Antoniou, V.M. Mladenov, 
I.F. Gonos, Editors, pp349-354 (2003). 

[9]  AC Varonides, Thin Solid Films,  Journal of 
Thin Solid Films, 451-452C, pp. 393 (2004). 

 


