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Abstract
Mobility management is a necessity in highly dynamic and large-scale mobile agents network, especially in a 
multi-region environment in order to control and communicate with agents after launching. Existing 
mechanisms for locating mobile agents are not efficient as these do not consider the effect of location updates 
on migration time and produce network overload. A location management protocol consists of location 
updates, searches and search updates. An update occurs when a mobile agent changes location. A search 
occurs when a mobile agent needs to be located. A search–update occurs after a successful search. This paper 
presents a hierarchical model for location management of mobile agents in global networks. Three protocols 
are developed, namely search, update and search-update. The location management technique uses one 
combination of search, update and search-update protocols throughout execution. Three cases are considered 
for Update and Search-Update Protocols. Thus nine combinations of location management protocols are 
generated, from which an agent can dynamically select one as per requirement, to communicate with other 
agents on the global network. We have implemented these protocols on the PMADE system developed at IIT 
Roorkee, to evaluate the performance of different protocols for various communication and mobility patterns. 
Results indicate that performing search –updates significantly reduces the message overhead of location 
management.  
 
Keywords:  Location Management, Mobile Agent, Update Protocol, Search Protocol and Search-Update 
Protocol. 
 
1 Introduction 
A Mobile agent (MA) [5] is a software process, 
which can move autonomously from one physical 
network location to another. The agent performs its 
job wherever and whenever it is found appropriate 
and is not restricted to be co-located with its client. 
Thus, there is an inherent sense of autonomy in the 
mobility and execution of the agent. Agents can be 
seen as automated errand boys who work for users. 
MA research evolved over the past years from the 
creation of many different monolithic mobile agent 
systems (MASs), often with similar characteristics 
and built by research groups spread all over the 
world, for optimisation and better understanding of 
specific agent issues [5], [3].  

As large scale MASs are the next trend 
following the popularity of MA technology, the 
collaborations between roaming agents has 
increased. There should be an efficient locating 
mechanism (mobility management) for locating 
MAs as part of the agent communication platform. 
Most MASs have the following common features: 
(a) MAs are launched to complete some tasks. They 

may roam around the network automatically 

from host to host.  They normally end at the 
launching point with their results or submit 
results at the last host in the itinerary [12].  

(b) The agent management centre keeps 
locating these roaming agents so that it can 
set up communication with them at their 
current locations whenever necessary. 

 
The second feature given above is actually the 

function of MAS mobility management. The basic 
operations associated with mobility management 
are:  
1. A roaming agent updates its location frequently 

to the central management server (e.g. a 
directory server).  

2. The agent management server refreshes the 
current location record of the agent in its 
location database.  

3. When there is a request asking for the location 
of the agent, the management server searches 
the database and replies with the current 
location of the MA. Beside these three basic 
steps, the management server may also process 
issues such as out-of-date location records. Most 
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existing MASs have provided partial mobility 
management, by defining different naming and 
locating mechanisms.  

 
An agent owner has no control over an agent, 

after launching it. To give some control or useful 
information to it, it is necessary to locate the 
required agent. Further, if any agent wants to 
communicate with another, it must know its present 
location. Typically, locating an agent is invoking a 
function of the form “where_is_agent(A) which 
should return the current location of agent A. 
Researchers have recently proposed many  protocols 
for designing such a function. Various approaches 
for storing, updating and locating MAs are 
addressed in [4, 9].  Some communication protocols 
use broadcasting or multicasting approaches to 
locate MAS [8].  

The ability to locate MAs while they are 
migrating from one node to another one is of great 
importance for the development of agent-based 
applications which have to work in geographically 
distributed environments [15, 9]. This issue becomes 
even more important when focus is shifted from 
distributed application limited in space, to 
distributed application whose environment is spread 
all over the Internet. None of the Java-based MA 
platform provides a comprehensive, effective 
location management system. In any case these 
mechanisms are strictly tied with the platform that 
they are designed for without exploiting existing 
techniques for searching or locating objects in the 
Internet. When a global environment such as the 
Internet is considered, a centralized naming protocol 
quickly becomes a bottleneck for the system, 
providing poor performance. Distributed techniques 
and algorithms are often more effective even if their 
implementation is more difficult [14], [13].  

For example, [16, 17] defined a naming and 
ATP mechanism; [18] used a middle -agent method 
and [19] adopted a matchmaking scheme. But none 
of these systems considered the performance 
overheads caused by mobility management, 
especially in case of highly dynamic and large scale 
MAs. Such systems need to update their locations 
more frequently, more network resources, more 
server storage and associated computation on both 
sides are required. The same happens given large 
scale of MAs. 

Di Stefeno et al [2] have developed a Search-by-
Path-Chase (SPC) protocol. They have assumed that 
a network is divided into regions and then into sites. 
Two types of registers are used in which an agent 
has to register or update its location information, 

whenever it has to migrate from one site to another. 
This registering and location updates result in time 
and network overhead. It increases migration time 
and ultimately total trip time of the agent. SPC 
protocol mainly concentrates on providing increased 
interaction efficiency.    

Location management is an important issue in 
MA computing. It consists of location updates, 
searches and search-updates: An update occurs 
when a MA changes location. A search occurs when 
a MA/host wants to communicate with a MA whose 
location is unknown to the requesting agent/host. A 
search-update occurs after a successful search, when 
the requesting agent/host updates the location 
information corresponding to the searched MA. The 
goal of a good location management protocol should 
be to provide efficient searches and updates. The 
number of messages sent, size of messages and 
distance the messages need to travel, characterize 
the cost of a location search and update protocol. An 
efficient location management protocol should 
attempt to minimize all these quantities. Hence, a 
new protocol is required that would generate 
minimum overhead and be suitable for both global 
and local area networks. 

This paper reports several location management 
protocols based on a hierarchical tree structure 
database. It also reports on the results of 
implementations carried out to evaluate the 
performance of proposed location management 
protocols for various call and mobility patterns. 
PMADE, developed at IIT Roorkee, is used as the 
development platform [11]. 

The rest of the paper is organized as follows: 
Section 2 presents an overview of PMADE. Section 
3 reports on a system model for a distributed system 
with MAs. Section 4 presents proposed location 
management protocols and Section 5 presents 
implementation details.  Evaluation results are 
shown in Section 6. Section 7 gives related works 
and Conclusions are given in Section 8.  
 
2 Overview of PMADE 
Figure 1 shows the basic block diagram of PMADE. 
Each node of the network has an Agent Host (AH), 
which is responsible for accepting and executing 
incoming autonomous Java agents and an Agent 
Submitter (AS) [10], which submits the MA on 
behalf of the user to the AH.  

A user, who wants to perform a task, submits 
the MA designed to perform that task, to the AS on 
the user system. The AS then tries to establish a 
connection with the specified AH, where the user 
already holds an account. If the connection is 



 3

established, the AS submits the MA to it and then 
goes offline. The AH examines the nature of the 
received agent and executes it. The execution of the 
agent depends on its nature and state. The agent can 
be transferred from one AH to another whenever 
required. On completion of execution, the agent 
submits its results to the AH, which in turn stores 
the results until the remote AS retrieves them for the 
user.  

 

Mobile Agent’s Result  

Mobile Agent with Task 

User Agent 
Submitter 

Manager Modules 
Host Driver 

Agent Host 

 
Figure 1. Block Architecture of PMADE 

 
The AH is the key component of PMADE.  It 

consists of the manager modules and the Host 
Driver. The Host Driver lies at the base of the 
PMADE architecture and the manager modules 
reside above it.  It is the basic utility module 
responsible for driving the AH by ensuring proper 
co-ordination between various managers and 
making them work in tandem. Details of the 
managers and their functions are provided in [11]. 
PMADE provides weak mobility to its agents and 
allows one-hop, two-hop and multi-hop agents [12]. 
 
3 System Model 
In PMADE, agent location is based on some 
assumptions for the distributed environment, as 
shown in Figure 2. We have assumed that the global 
network environment is divided into network 
domains, regions (subnetworks) and agent hosts 
(local sites). Further, there is a domain management 
server (DMS) in each network domain which has 
information about all other DMSs in the global 
network. It also has information about all the 
regions in the network domain. It is responsible for 
maintaining uniqueness of names of regions, which 
are part of that network and helps to identify the 
region in which an agent is present.   

Each DMS maintains a Domain Agent Database 
(DAD), for information about the current location of 
all agents which were created in that domain or 
transited though it. Every region maintains 
information about all AHs which are part of that 
region. An AH can be a member of an existing 
region or can start in a new region. In each region, a 
Region Agent Database (RAD) is present at an AH 

which runs at the gateway of a subnetwork. It 
contains location information about each agent 
which was created in that region or transited through 
it. This host acts as the Agent Name Server (ANS) 
[35], which manages the RAD. ANS is responsible 
for maintaining uniqueness of names of all MAs, 
created in that region. When a new agent is created, 
the user assigns a name to it by registering in the 
RAD of its birth region. 
 
 

Internet 

 
 
 
 
 
 
 
 
 

 

 
 

 

Network Domain 1 

DMS 

Gateway 

Site 

Network Domain 3 Network Domain 2 

Subnetwork/ 
Region   

AH 
 
DAD 
 
RAD 

 
Network domain 
 
Region  

 
 

 
 

 
 
 

Figure 2. Structure of a Distributed Environment 
 

Each entry of DAD of the form ( )rFDA ,,  
represents that agent A  can be found in region r  of 
the foreign network domain FD , or it has transited 
from that network domain or region. Each entry of 
RAD of the form ( )NilrA ,,  represents the region 
r  where agent A was found or transited through it.  
Similarly ( )AHNilA ,,  represents an agent A  
which exists in that region at AH . For DAD and 
RAD, the primary key is the agent name A .   

Agent migration from one network domain to 
another is always accomplished through the DMS. 
During inter domain migration the agent has to 
update location information in the DAD of the 
present domain and register in the DAD of the target 
network domain. 

For intra region migration, it has to update its 
location information in the RAD of that region. This 
is an Intra Region Location Update. During inter 
region migration, the agent has to update the 
location information in the RAD of present region 
and register in the RAD of the target region, 
specifying the host in that region to which it is 
migrating. Any location protocol for MAs deals with 
three aspects: name binding, migration and 
location, each related to a particular phase in the 
agent’s lifetime. We have defined four atomic 
operations on DAD and RAD. 
• bind operation is performed when a name is 

assigned to a newly created MA, whose birth 
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location is also stored. This operation causes the 
insertion of a new tuple in the database. As the 
agent name has to be unique, this operation fails 
if a tuple with the same name already exists in 
the database.  

• newloc operation is performed when the agent 
changes its location, by migrating to a new one. 
This operation updates the tuple already present 
in the database.  

• find operation is performed when an agent has 
to be located in order to interact with it. For a 
given agent name, this operation returns the 
current location of the agent. 

• unbind operation is performed when an agent 
name is no longer used (i.e., the agent has been 
disposed off). This operation causes the deletion 
of the relative tuple from the database.    

 
Mobile networks generally comprise of a static 

backbone network and a wireless network. There are 
three distinct sets of entities, namely MAs, MHs and 
fixed hosts. A host that can move while retaining its 
network connection is called a MH. The static 
network comprises of the fixed hosts and the 
communication links between them. Some of the 
fixed hosts, called base host (BH) are augmented 
with a wireless interface, and they provide a 
gateway for communication between the wireless 
network and the static network [8]. Due to the 
limited range of wireless transreceivers, a MH/MA 
can communicate with a BH. The geographical area 
covered by a region is a function of the medium 
used for wireless communication. Currently, the 
average size of a region is of the order of 1-2 miles 
in diameter. As the demand for services increase, the 
number of regions may become insufficient to 
provide the required grade of service. Region 
splitting can then be used to increase the traffic 
handled in an area without increasing the bandwidth 
of the system. A MA communicates with one BH at 
any given time. The BH is responsible for 
forwarding data between the MH/MA and the static 
network. Due to mobility, MH/MA may cross the 
boundary between two regions while being active. 
Thus, the task of forwarding data between the static 
network and the MH/MA must be transferred to the 
new regions. This process, known as handoff, is 
transparent to the mobile user [6, 1]. The initiative 
for a handoff can come from the MH or the BHs. 
Handoff helps to maintain an end-to-end 
connectivity in the dynamically reconfigured 
network topology. 
 

4 Location Management Protocol 
A location management protocol is a combination of 
a search protocol, an update protocol, and a search-
update protocol. Only the location management 
protocols in the absence of a home location server 
(HLS) are discussed in the paper. 
 
4.1 Logical Network Architecture (LNA) 
A Global network consists of MAs, MASs and 
location servers (LSs). The logical network 
architecture (LNA) is a hierarchical structure (a tree 
with H levels) consisting of BHs and LSs. As 
shown in Figure 3, the BHs are located at the leaf 
level of the tree. Each BH maintains information 
about the agents residing in its region. The other 
nodes in the tree are called LSs. Each LS maintains 
information regarding MAs residing in its subtree. 

Each communication link has a weight attached 
to it. The weight of a link is the cost of transmitting 
a message on the link. Let [ ][ ]destsrcl represent 

the link between nodes src  and dest , and let ( )lw  
represent the weight (or cost) of link l . The cost 
depends on the size of the message, the distance 
between the hosts (agents), and the bandwidth of the 
link. For analysis purposes, we assume that, for all 
l , ( ) 1=lw . Essentially, the cost metric is the 
number of messages sent. 
 
 

LS 

LS LS LS 

LS 

LS 

Root (DMS) 

BH 
Region  

 
Figure 3. Logical Network Architecture 

 
4.2 Data Structures 
There is a unique “home” address for every MA. 
The home address is the identifier/name of the MA. 
The “physical” address of a MA might change, but 
its home address remains the same, irrespective of 
the agent location [8], [2]. Each LS maintains an 
address matching table that maps the home address 
to the physical address of the MAs residing in the 
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subtree beneath it. Thus, the problem of location 
management basically focuses on the management 
of the address matching tables. 

There is a location entry in a LS corresponding 
to an agent A , if it is in a region in the subtree 
under LS. If A  moves to a region which is not in 
the subtree under LS, then the entry corresponding 
to A  is updated at LS. All the nodes maintain 
location information using 3-tuples which have the 
following elements:  

 
(i)  MA identifier (id) (given by agent naming 

server),  
(ii)  Forwarding pointer destination ( destfp _ ), 

and  
(iii)  Time at which last forwarding pointer 

update took place ( timefp _ ).  
 
Each LS maintains a 3-tuple for each MA 

residing in the subtree beneath it, and each BH 
maintains a 3-tuple for each MA residing in its 
region. The default value of destfp _ and 

timefp _  is NULL. If the destfp _  field of an 
agent A  is NULL in LS L , then, A  is not in a 
region in the subtree under L . Let us suppose that 
we are using a protocol which uses forwarding 
pointers for location updates. Let A  reside initially 
in the region r . The BH of region r  will have an 
entry (A , NULL, NULL). Let there be a LS L  
which maintains information about  the agents 
residing in r . There will be an entry ( A , r , NULL) 
corresponding to A  at L . Let A  move to a new 
region 'r , which is not a part of the subtree of L . 
Let t  be the local time at the BH of r  when change 
of location of A  is recorded at BH. Let 't be the 
local time atL  when the change of location of A  is 
recorded at L . Thus, the location information of A  
will be ( )'' ,, trA  at L  and ( )trA ,, '  at BH of region 
r . 

Note: The above data structures 
contain timefp _  field to store time. The timefp _  
entry for a data structure on a node, sayv , contains 
the local time at node v  when the data structure was 
last modified. We will denote this time by t  in the 
following. It should be noted that the correctness of 
the algorithms does not require the clocks at various 
nodes to be tightly synchronized. 
 
4.3 Initial Conditions        
It is assumed that, initially location information of 
the MAs is stored in the corresponding LSs, i.e., 

each LS has the correct location information for all 
the agents residing in the region in its subtree. Thus, 
the root LS should have the correct location 
information of all agents in the system. In Figure 4, 
nodes 71−LS  are LSs, and 158−BH are BHs. There 

are two MAs 1A  and 2A . In the initial state, agent 

1A is in region 8, and 2A  is in region 12. Initially, 

the correct location information of agent 1A  will be 
available at LSs 4LS , 2LS  and 1LS . Likewise, the 

location information of 2A  will be available at LSs 

6LS , 3LS  and 1LS . Thus, the location information 
of an agent is available at all the LSs located on the 
path from its current BH to the root. 

 

Figure 4. Example of Proposed Network 
Architecture 

 
4.4 Update Protocol 
The protocol for updating the location information 
at the LSs and the BHs, when a MA moves, is as 
follows: Let src and dest be the source and 
destination regions, respectively. Let A  be the 
identifier of the MA. Let t  denote the local time at a 
node when a change in location of A  is recorded at 
that node. The value of t  will be different at 
different nodes.  For this protocol we have 
considered three cases as follows: 
Case 1: Single Updates (SU): In this the update 
takes place only at the BH of the source and 
destination regions. A forwarding pointer is kept at 
the source BH. The updated entry at the source BH 
becomes ( )tdestA ,, . An entry for agent A , 
( )NULLNULLA ,,  is added at the destination BH. 
The location information at the LSs are not updated. 
The cost of update is zero, because there is no 
update message being sent. 
Case 2:  Full Updates (FU): Upon a move, apart 
from BHs involved (i.e., BH of the source and 
destination regions), location updates take place in 
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all the LSs located on the path from the BH of the 
source and destination region to the root. Details are 
as follows: 
 
Source region: 
1. At the BH: For agent A , set destdestfp =_ , 

and ttimefp =_ . The updated entry for agent 

A  at the BH becomes ( )tdestA ,, . 
2. All LSs on the path from src to the root: The 

BH of src sends update message to these LSs. 
Upon receipt of the update message, the LSs 
update the entry for A  to ( )tdestA ,, . 

 
Destination region: 
1.  At the BH: An entry ( )NULLNULLA ,,  is 

added for agent A . If there was an old entry 
for A , it is overwritten by this new entry. At 
any node, there can be only one entry per 
agent. 

2. All LSs on the path from dest to the root: The 
BH of dest sends update message to these LSs. 
Upon receipt of the update message the LSs 
create an entry. If there was an old entry, it is 
over written by this new entry. 

 
Therefore, in an H-level tree, the update cost 

(the cost metric is number of messages) per move is 
( )12 −H . Suppose in Figure 4, agent A  moves 

from 8BH  to 14BH .  A forwarding pointer to 

14BH  will be kept at 8BH . 8BH  sends update 

messages to LSs 4LS , 2LS  and 1LS , and these 

LSs also create a forwarding pointer to 14BH . An 
entry for 1A  will be made at 14BH . 14BH  sends 

update message to LSs 7LS , 3LS  and 1LS , and 

these LSs also make an entry for agent 1A . 
Case 3: Limited Update (LU): Update in the 
location information takes place at a limited number 
of levels of LSs in the tree. Here, updates occur at 

( )Hm <  lower levels of LSs on the path to the root. 
Updates at these LSs are similar to the FU. The LSs 
at levels higher than m are not updated. Thus, the 
update cost per move is m2 . Let the value of m  be 
chosen to be 1. Suppose in Figure 4, agent 1A  

moves from 8BH  to 14BH . The forwarding pointer 

to 14BH will be kept at 8BH . 8BH sends an update 

message to 4LS , and 4LS  maintains forwarding 

pointer to 14BH . An entry for 1A  will be made at 

14BH . 14BH sends an update message to 7LS , who 

makes an entry for agent 1A . 
 
4.5 Search Protocol 
If agent A  in region R  wants to communicate with 
another agent 'A , A  has to know the location of 

'A . This requires that agent A  search for agent 'A . 
As stated earlier, we do not make explicit use of 
HLSs for searches. The search process in the 
absence of a HLS is as follows.  
1. If the BH of R  has no location information for 

'A , it forwards the location query to the next 
higher-level LS on the path to the root.  

2. If the LS does not have any location information 
for 'A , it again forwards the location query to 
the next higher-level LS on the path to the root.  

3. Repeat 1 & 2 until a LS which has location 
information for 'A is reached.  

4. If the location information (i.e., region 
identifier, say S ) for 'A is obtained, the 
location query is forwarded to the BH of region 
S . Agent 'A  will either be in region S  or the 
BH will have a forwarding pointer 
corresponding to 'A .  

5. If 'A  is in region S , the search is complete. 
Else, a chain of forwarding pointers is traversed 
until BH of the containing agent 'A  is reached. 

 
4.6 Search-Update Protocol  
Location management becomes more efficient if the 
location updates also take place after a successful 
search. For example, suppose there is an agent 
A that frequently calls 'A . It may be useful to 

update the location information of 'A after a 
successful search, so that if A calls again, the search 
cost is likely to be small. The location information 
update takes place at the BH of the caller agent. Let 
agent A  be the caller at the source, and 'A be the 
agent to be searched at the destination host. Let the 
location of A  and 'A  be K  and 'K , respectively. 
The ollowing are the three cases to update location 
information upon a search.   
Case 1: No Update (NU): There are no location 
updates, the timefp _  field of the entry 

corresponding to 'A  at the BH on the search path is 
updated to the current time at the BH. The cost is 
zero. This is because the update of the time field 
could be done during the search process itself, and 
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no additional message needs to be sent for this 
purpose. The update in timefp _  is done to avoid 
purging of the forwarding pointer data at the BHs. 
The purge protocol is explained in the next section.  
Case 2: Jump Update (JU): A location update 
takes place only at the caller agent’s BH, i.e., BH of 
region K . The entry for 'A at the BH of region K is 
set to ( )tKA ,, '' , where t  is the local time at the 
BH when the location information is updated. This 
update cost is 1. This is because only one message 
needs to be sent from BH of 'K  notifying the 
location information of agent 'A . 
Case 3: Path Compression Update (PCU): Upon a 
successful search, a location update takes place at all 
the nodes in the search path. All the LSs on the 
search path have the entry of 'A updated to 
( )tKA ,, ''  where t  is the local time at the LS when 
the location information is updated. All the BHs on 
the search path including the caller agent’s BH have 
an entry of 'A updated to ( )tKA ,, '' , where t  is the 
local time at the BH when the location information 
is updated. In Figure 4, let agent 1A calls agent 2A . 
Suppose the location information of 2A  is available 

only at the 6LS , 3LS  and 1LS . Using the search 
protocol described previously, the search path will 
be 121248 LSLSLSLSLS →→→→ . The 

location updates take place at 4LS , 2LS  and 1LS , 
and 8BH . The update cost is the length of the 
search path that is in this example is 4. 
 
4.7 Purging Protocol  
We need to periodically purge the stale forwarding 
pointers at the LSs and the BH. This should be done 
in order to (i) save storage space at the nodes, and 
(ii) avoid storing stale location information. We use 
a design parameter called Maximum Threshold Call 
Interval (MTCI) to decide whether to purge a 
forwarding pointer information or not. Let the 
current time be timecurr _ . If  timefp _  ? NULL, 
and MTCItimefptimecurr ≥− __ then the entry 

for the agent is purged from the iBH . If some other 
agents in the system which have recently used the 
forwarding pointer information of iBH . In the LSs, 
if MTCItimefptimecurr ≥− __ for MA, the 
location entry for that agent is purged. 

When SU and LU cases of update protocol are 
used, the forwarding pointers at higher level LSs do 

not get updated, and  become stale. Thus, these 
forwarding pointers get purged periodically. 
However, some of the searches for the agent might 
reach the higher levels. If the LSs at the higher 
levels do not have information about the agent, the 
root has to broadcast to determine the location. To 
avoid this, the forwarding pointers at the LSs on the 
path to the root from the current BH must be 
updated periodically along with purging. The 
current BH of each MA achieves this by sending a 
location update message to the LSs on the path to 
the root. 

Note: the timefp _  value for an agent residing 
in the region will be NULL. So we are considering 
agents which are currently not residing in the BH’s 
region and whose forwarding pointer information is 
stored at the BH. 
 
5 Implementation and Performance 
Study  
A tradeoff exists between the cost of updates (upon 
moves and searches) and cost of searches. The 
parameters that affect this tradeoff are (i) call 
frequency, and (ii) mobility. This paper evaluates 
the effects of mobility and call frequency on the cost 
of updates, search-updates and searches. As stated 
earlier, the location management protocol is a 
combination of a search protocol, an update protocol 
and a search-update protocol. The search protocol is 
the same for all location management protocols. A 
total of nine location protocols are obtained using 
the above protocols for updates and search –updates.  
We performed simulations to analyze the 
performance of the proposed location management 
protocols for various call frequency and mobility 
values. The location management protocols 
simulated were obtained by choosing one case of 
update protocol (say UX, where UX = SU, FU or 
LMU) and one case of search-update protocol (say 
SY, where SY = NU, JU or PCU). Thus, the 
location management protocol obtained is denoted 
as UX-SY. 
 
5.1 System Model 
We assume a binary tree as LNA for the 
simulations. The height of the tree is H . The 
number of LSs in the network is ( ) 12 1 −−H , and the 
number of BHs (or the number of regions) is ( )12 −H . 
Physical proximity of the region under the same LS 
is assumed. This will help in determining short and 
long moves. The height H was chosen to be 10 for 
the simulations (in existing networks like GSM or 
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Internet, the height may be small, i.e., 3 or 4. Since a 
binary tree was assumed for the simulations, we 
needed to have higher number of levels to have a 
sizeable number of regions in the network. 
However, similar performance trends are expected 
for other networks.) . Thus, there were 512 regions 
in the network. 

The main aim of the work was to develop 
protocols for efficient searches and updates, i.e., 
reduce, the number of message due to location 
updates, without increasing the number of messages 
required for searches. Since the average message 
delay is likely to be small compared to the intervals 
between consecutive calls and moves, we ignore 
message delays, i.e., the location updates and 
searches are immediate. 

Simulations were performed for two types of 
environments: (i) arbitrary agent moves and 
arbitrary caller agents, (ii) Short agent moves and a 
set of caller agents. In type (i), the agent can move 
to any location (region) and receive calls from any 
other agent in the network. This is not necessarily 
true in real life, but it gives a fair idea of the 
performance of the location management protocols 
in such extreme conditions. Type (ii) is closer to real 
life mobile environments. Agents are expected to 
make a lot of short moves to nearby destinations, 
and are expected to receive calls from a specific set 
of agents (e.g. family, business colleague’s agents).  

It should be noted that we have assumed that the 
caller agents are immobile.   
 
5.1.1 Call-mobility distribution for type (i)    
The time between moves of an agent is assumed to 
follow an exponential distribution with a mean MT . 
The destination region is chosen randomly among 
512 regions. The time between calls for a caller 
agent is assumed to follow an exponential 
distribution with a mean CT . The caller agent’s 
region is chosen randomly from among the 512 
regions. 
 
5.1.2 Call-mobility distribution for type (ii)   
Type (ii) consists of generating calls from a specific 
set of caller agents and short moves. One option to 
generate short moves is to put an upper limit on the 
length of the move, in terms of number of regions, 
and randomly vary the length of the move within the 
upper limit. For example, in Figure 4, if we keep an 
upper limit of 1, agent 2A  will be able to make the 
next move to region 11 or 13. But, our LNA just 
assumes proximity of regions which are under the 

same LS. Thus, a move from 12?  11 is not 
equivalent to the move from 12?  13. 

Instead, we varied the number of levels of LSs, 
where location information will be updated due to 
the move, if FU were to be used. The number of 
levels can be varied between 1 to ( )1−H . Level 0 
is the BH level. The lesser the number of levels 
affected, the shorter is the length of the move. The 
probability distribution function of the length of the 
move in terms of height (number of levels) is 

( )( ) ( )hH
HH

hp −
−−

= *
21

2
)( , shown in Figure 5. 

 
 

1 →h    ( )1−H
  

( )hp  

 
Figure 5. Probability Distribution Function ( )hp  

The cumulative distribution function ( )cdf  is as 

follows: ∑
=

=
h

x

xphcdf
1

)()( . We randomly chose a 

height h based on the given probability distribution 
region as h2 . Let the identifier of the current region 
(i.e., the source region) be curr . Knowing the 
height h andcurr , one can easily determine the 
ancestor of curr at level h  in the binary tree. Let it 
be ls . Knowing ls , the set of destination region 
possible is { }hhhh lslsls 22*,...,12*,2* ++ . A 
destination region is chosen randomly [7]. This is in 
coherence with the assumption of proximity of 
regions under the same LS. The time between 
moves of an agent is assumed to follow an 
exponential distribution with mean MT . 

In type (ii), for each MA, caller agents were 
chosen from a specific set of regions. The size of the 
set was chosen to be 20. The set was chosen 
arbitrarily and regions were not necessarily 
neighbouring. The calls always originated from 
those regions. The time between calls for an agent is 
assumed to follow an exponential distribution with 
mean CT . 
Purge was performed periodically at every MTCI 
units of time. The value of MTCI was chosen to be 
10 units of time. 
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5.2 Cost model 
As stated earlier, the cost of transmitting a message 
over any link is 1. Therefore, the cost metric is 
essentially the number of messages required for 
each operation (search, update and search-update). 
Thus, the cost of an update is the number of LSs 
which update the location information of the agent. 
The cost of a search is the number of LSs and BH 
visited before locating the agent. Cost of a search-
update is the number of LSs which update the 
location information of the agent. 

The performance parameter is the aggregate 
cost, defined as the sum of average update cost, 
average search cost, and the average search-update 
cost. 
 
5.3 Experimental Results 
Simulations were performed to analyze the 
performance of the various location management 
protocols. Results were obtained for the two types of 
environments, Type (i) and (ii) The values of CT  

and MT  were both varied from 1 to 15 units of time. 

The value of CT  was changed to vary the time 
interval between two successive calls. The value of 

MT was changed to vary the mobility of the agent. 

For example, 1=CT  and 1=MT characterizes a 
communication intensive and ultra mobile 
environment. 

Type (i): The average length of a move was 170, 
and the average distance of a call was also 170. It 
was observed that the SU-PCU protocol outperforms 
all the other protocols for all values of MT  and CT . 
Therefore, we have only plotted the curves for SU-
PCU. The protocols using FU and LMU suffered 
due to the high cost of updates upon each move. SU-
NU protocol suffered due to very high search costs. 
Because the caller agents were arbitrary, SU-JU 
protocol did not perform well in the update upon a 
successful search was not helping in reducing the 
search cost.  

Figure 6 shows the aggregate cost for the SU-
PCU protocol as a function of CT  for different 

values of MT . As seen in the figure, the aggregate 
cost increases, the calls become infrequent, and the 
agents might have moved to new locations, 
requiring new searches. Thus, the reduction in 
search cost by path compression is not very 
effective. It is also seen that the rise in aggregate 
cost with CT  is higher for lower values of MT . 

Lower the value of MT , higher is the mobility, and 

thus the search cost will be higher. At high values of 

MT , the difference in the aggregate costs due to 

different values of MT is low. This is because as 

MT increases, the agent movement reduces. Beyond 

a point, increasing MT does not affect the aggregate 
costs, and the curves converge to a single curve. 

Type (ii): The average length of a move was 9, 
and the average distance of a call was 110. It was 
observed that the SU-PCU and the SU-JU protocols 
outperformed all the other protocols for all values of 

MT and CT . In contrast to Type (i), SU-JU 
performed well, because there is a specific set of 
caller agents. Thus, the jump update at the caller 
agent’s host is more effective in reducing the search 
cost, because the caller agent calls the agent again 
with a higher probability than in Type (i) 
environment.  Figure 7 shows the aggregate cost for 
the SU-JU protocol and the SU-PCU protocol as a 
function of CT  for different values of MT . As can 
be seen, SU-JU performs better than SU-PCU in 
high-communication and low-mobility and low-
communication and high-mobility environments. In 
these environments, the search cost for SU-PCU and 
SU-JU are comparable. Since the search-update cost 
is same as the search cost for SU-PCU is simply 
twice the search cost. On the other hand, the average 
search-update cost for SU-JU is less than or equal to 
1. It should be noted that in cases where the caller 
agent has correct information of the destination 
agent (host), the search-update cost is zero. Thus, 
the aggregate cost of SU-JU is lower than SU-PCU. 
SU-PCU performs better for other values of MT  and 

CT  because the search cost for SU-JU becomes 
large compared to SU-PCU.  

Figure 8 shows the average search cost for the 
SU-JU protocol and the SU-PCU protocol as a 
function of CT  for different values of MT . As can 
be seen, SU-PCU has a much lower search cost than 
SU-JU. The search cost of SU-JU is slightly lower 
than SU-PCU for high communication and low-
mobility environments. 

It was noticed that performing search-updates 
significantly reduced the search and aggregate costs. 
For the assumed LNA, it is seen that the SU-PCU 
protocol performs better than the other protocols for 
most values of CT  and MT . It is expected that SU-
PCU will perform well in other network models too. 
For models with different costs associated with each 
link, we expect the other proposed protocols to 
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perform well, and sometimes better than the SU-
PCU protocol (for some values of MT  and CT ). 
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Figure 8. Search Cost for Type (ii) 

 
6 Evaluation Results 
Our tests took place in a 10/100 MBps switched 
LAN that connects 850 workstations and personal 
computers, and is used by about 500 hundred 
researchers and students. We ran PMADE equipped 
with the developed protocols on several P-4, 3 GHz 
machines. The AS node and agent host nodes have 
256 MB main memory, while the LS (Agent Host at 

the root) has 512 MB. We used the j2sdk 1.4.1 Java 
Virtual Machine with native thread support. 

First, we tested the capacity and performance of 
our storage backend. The LS (root agent host) was 
able to hold up to 4*106 entries before the system 
ran out of memory {Figure 3}. This means that, 
given an extreme of 8*108 Internet users (NUA 
estimates there were more than 605.60 million users 
online in the Internet on September 2002, [36]) each 
running 100 MAs simultaneously, about 20,000 LSs 
would be required to keep all entries. This is less 
than 0.0057% of the hosts in the Internet, according 
to ISC estimates (ISC estimates there were more 
than 350,000,000 hosts in the Internet in January 
2005, [37]) at the time of writing.  

Next, we let up to eight agents/ASs send 
requests concurrently. Table 1 gives the response 
rates we measured in tests with a single agent/AS, 
sorted by request type. Secured registration was 
slowest, as could be expected. However, this type of 
request is required only once per agent. In this test 
the LS handled about 400 agent lookup requests per 
second, which includes processing overhead at the 
AS (ASs start requests parallel threads). Figures 9 
and 10 show the response rates we measured for 
concurrent lookup requests with one to eight 
agents/ASs. With two or more agents/ASs, the 
response rate jumps from about 210 requests per 
second to roughly 332, and remains more or less 
stable at this mark (with one agent/AS, the agent 
host has idle time, with two or more it becomes 
congested). Table 2 shows how response times 
develop with an increasing number of agents/ASs. 
With about 2626 agents/ASs, requests take longer 
than 13 seconds to process, which causes network 
connections to time out for few agents.  

 

Table 1. This figure shows the size of request 
packets, and average processing time of the 
searching service with one agent/AS, by request 
type. *The lengths marked which might differ 
depending on the length of the stored location 
reference. 
 

Type Length Mean 
Time 

Requests/s Action of 

Lookup 32 bytes 4.7 ms 313 Location 
search 

Registration 
secured 

431 
bytes* 

11 ms 15 Init 

Update 103 
bytes* 

1 ms 150 Location 
Update 

Register 
unsecured 

103 
bytes* 

5 ms 270 LS 
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Num
ber 
of 
Agen
t 
Host 

1 2 4 8 16 32 64 128 256 512 

Num
ber 
of 
Agen
ts 
/AS 

1  2 4 8 16 32 64 128 256 512 

Resp
onse 
time  

301 
ms 

572 
ms 

1 
sec, 
500 
ms 

2 
sec, 
3m
s 

4 
sec, 
3 
ms 

6 
sec, 
6m
s 

10 
sec, 
510 
ms 

21 
sec, 
21 
ms 

53 
sec 

154 
sec, 
100 
ms 

Table 2. Agent Response Time (It includes Agent 
Migration Time, Agent Decryption Time, 
User/Agent Authentication Time, Result Encryption 
and Packaging Time). 
 
Number of LSs 1 2 3 4 
Agent Migration time when 
LSs are active (ms) 

145.7 147 148.1 150 

Agent Migration time when 
LSs are not active (ms) 

140 140 140 140 

 
Table 3. Effect of LSs on Agent Migration Time 

(size of agent is considered 10.203 KB) 
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Figure 9. This figure shows the average number of 
requests that can be handled by the LS, depending 
on the number of ASs/agents that query the server 
concurrently. A circle mark represents the mean of a 
set of 6000 measured values. 
 

We also measured the impact of the location 
service (search and update) integration on the 
migration time of MAs in the PMADE. Without 
location service integration, we measured an 
average of 140 milliseconds per migration of a 
simple benchmark agent, compared to with location 
service (search & update), which we consider 
tolerable {Table 3}. 
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Figure 10. This figure shows how response times of 
the LS develop with an increasing number of 
ASs/agents that queries the LS concurrently. A 
circle mark represents the mean of a set of 6000 
measured values. 
 
7 Related Work 
In the literature, several approaches [2, 13, 20] 
described the problems of locating MAs. Di Stefano 
et al. [2] propose the use of LSs, where each server 
is responsible for all agents in its domain. Each 
agent has a home server that can be derived from a 
location-specific part of the agent’s name. 
Whenever the agent enters a new domain, the 
servers responsible for the old and new domain, as 
well as the home server are updated. Lookups for 
agents not in the local domain start at the home 
server. Lazar et al. [13] used DNS like name solving 
to find the latest location of a MA in specific 
domain gateways. One approach [21] used location 
transparent routing in MASs that merges name 
lookups with routing. However, these approaches 
cannot solve the performance problem in case of 
large scale of MAs. Pitoura [23] suggested an 
efficient hierarchical scheme for locating highly 
mobile users.  

There are also approaches [22, 20] that use 
automating directory services for tracking MAs. But 
these approaches cannot give an optimal solution for 
the lack of a suitable cost formulation. The problem 
lies in that they do not consider the performance 
overheads caused by a single location update 
operation, O. Shehory [24] proposed a scalable 
agent location mechanism which considers the 
overall system overheads. The Globe [32] system is 
a distributed directory designed to support billions 
of references to mobile objects. However, the 
authors acknowledge that their hierarchical 
approach is not scalable enough to fulfil this goal 
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due to the enormous storage demands and relatively 
large number of requests that must be handled by 
higher-level directory nodes. In order to overcome 
these problems, they propose to use the first bits of 
an object’s globally unique handle as the identifier 
of directory subnodes, which share the load on their 
directory level. This approach equals the one we 
chose in order to provide scalability.  

Although several major MASs have developed 
some locating mechanisms [16, 17], they did not 
consider mobility management for large-scale MAS. 
So their applications are quite limited.  Several other 
schemes for locating MAs, and routing messages 
among them were proposed in the past, e.g. [27, 30, 
28, 33, 7]. Some of these approaches assume that 
there is a logical network of connected MASs [27, 7, 
30], and routing of agents or messages is done along 
the edges of this graph. In the case of [7], the graph 
must actually be a balanced tree. However, any 
approach that builds on a particular network 
topology makes sense only if MASs are 
implemented on the network layer as part of routers. 
Most of the contemporary MASs are implemented 
on the application layer, though. From the 
perspective of the application layer, the Internet is a 
fully connected graph. Hence, a logical topology 
that is layered on top of the physical structure of the 
Internet creates undesired and unnecessary routing 
overhead. The logical routing may even run counter 
to the actual physical routing.  

Additionally, the approaches described in [27, 
7] put the burden of setting up and maintaining the 
logical structure on administrators; a job that, in our 
opinion, quickly spirals out of control. In particular, 
the approach described in [27] is not scalable. Each 
node in the tree has storage requirements 
proportional to the number of MAs managed by it, 
and update rates proportional to the rate of 
migrations that start or end in its subtree. In 
particular, the root node has to cope with all of the 
traffic. Protocols based on forwarding pointers and 
dynamic for shortening of pointer chains are 
proposed, e.g. in [29, 31]; they are also used in Mole  
for the purpose of orphan detection [26]. The 
disadvantage of this approach is its lack of 
robustness, a single broken or timed-out link makes 
the agent unreachable. The Mobile Object 
Workbench [28] supports a hierarchical directory 
service for locating objects that moved. 
Wojciechowski et al [33] use a combination of 
registering and forward references. Forward 
references act as a cache. In case of a miss, the 
central server is asked to forward the message, and 
the invalid forward reference is updated. The 

approach let each agent hold a mostly accurate 
contact list of other agents it knows. An agent’s 
location can be found by consulting these contact 
lists dynamically maintained by some neighbour 
agents. This scheme can only work under the 
assumption of low movement frequency (hence, less 
updates of an agent’s contact list). So, it is not 
suitable for a highly dynamic scenario. A scalable 
hierarchical protocol is not only the main concern of 
our research presented here, we have developed a 
novel location management protocol in which a set 
of protocols implemented and an agent dynamically 
can select as per requirement to establish 
communication link to the communicating party. 
Selection of protocol depends on the network 
topology.   
 
8 Conclusion 
In this paper we have presented several location 
management protocols based on a hierarchical tree 
structure database. These location management 
protocols use one combination of search, update and 
search-update protocols throughout the execution. 
Simulations were carried out to evaluate the 
performance of the various location management 
protocols. It was noticed that performing search-
updates significantly reduced aggregate costs. For 
the assumed LNA, it is found that the SU-PCU 
(combination of single updates and path 
compression search-update) protocol performs better 
than the other protocols for most values of 
communications rate CT  and mobility MT . It is 
expected that SU-PCU will perform well with other 
network models too.  We have also applied these 
protocols in the real life application implementation 
developed on PMADE. It is found that overhead 
generated by them does not affect the actual agent 
response and migration times.  
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