
Mobile Agent Location Management in Global Networks

R. B. Patel
Department of Computer Science

& Engineering
M. M. Engineering College,

Mullana-133203
Haryana, India

Nikos Mastorakis
Dept of Computer Science
Military Inst. of University
Education / Hellenic Naval

Academy
Terma Hatzikyriakou 18539,

Piraeus, GREECE

K. Garg
Department of Electronics &

Computer Engg,
IIT Roorkee, Roorkee-247667,

Uttaranchal, India

Abstract
Mobility management is a necessity in highly dynamic and large-scale mobile agents network, especially in a
multi-region environment in order to control and communicate with agents after launching. Existing
mechanisms for locating mobile agents are not efficient as these do not consider the effect of location updates
on migration time and produce network overload. A location management protocol consists of location
updates, searches and search updates. An update occurs when a mobile agent changes location. A search
occurs when a mobile agent needs to be located. A search–update occurs after a successful search. This paper
presents a hierarchical model for location management of mobile agents in global networks. Three protocols
are developed, namely search, update and search-update. The location management technique uses one
combination of search, update and search-update protocols throughout execution. Three cases are considered
for Update and Search-Update Protocols. Thus nine combinations of location management protocols are
generated, from which an agent can dynamically select one as per requirement, to communicate with other
agents on the global network. We have implemented these protocols on the PMADE system developed at IIT
Roorkee, to evaluate the performance of different protocols for various communication and mobility patterns.
Results indicate that performing search –updates significantly reduces the message overhead of location
management.

Keywords: Location Management, Mobile Agent, Update Protocol, Search Protocol and Search-Update
Protocol.

1 Introduction
A Mobile agent (MA) [5] is a software process,
which can move autonomously from one physical
network location to another. The agent performs its
job wherever and whenever it is found appropriate
and is not restricted to be co-located with its client.
Thus, there is an inherent sense of autonomy in the
mobility and execution of the agent. Agents can be
seen as automated errand boys who work for users.
MA research evolved over the past years from the
creation of many different monolithic mobile agent
systems (MASs), often with similar characteristics
and built by research groups spread all over the
world, for optimisation and better understanding of
specific agent issues [5], [3].

As large scale MASs are the next trend
following the popularity of MA technology, the
collaborations between roaming agents has
increased. There should be an efficient locating
mechanism (mobility management) for locating
MAs as part of the agent communication platform.
Most MASs have the following common features:
(a) MAs are launched to complete some tasks. They

may roam around the network automatically

from host to host. They normally end at the
launching point with their results or submit
results at the last host in the itinerary [12].

(b) The agent management centre keeps
locating these roaming agents so that it can
set up communication with them at their
current locations whenever necessary.

The second feature given above is actually the

function of MAS mobility management. The basic
operations associated with mobility management
are:
1. A roaming agent updates its location frequently

to the central management server (e.g. a
directory server).

2. The agent management server refreshes the
current location record of the agent in its
location database.

3. When there is a request asking for the location
of the agent, the management server searches
the database and replies with the current
location of the MA. Beside these three basic
steps, the management server may also process
issues such as out-of-date location records. Most

 2

existing MASs have provided partial mobility
management, by defining different naming and
locating mechanisms.

An agent owner has no control over an agent,

after launching it. To give some control or useful
information to it, it is necessary to locate the
required agent. Further, if any agent wants to
communicate with another, it must know its present
location. Typically, locating an agent is invoking a
function of the form “where_is_agent(A) which
should return the current location of agent A.
Researchers have recently proposed many protocols
for designing such a function. Various approaches
for storing, updating and locating MAs are
addressed in [4, 9]. Some communication protocols
use broadcasting or multicasting approaches to
locate MAS [8].

The ability to locate MAs while they are
migrating from one node to another one is of great
importance for the development of agent-based
applications which have to work in geographically
distributed environments [15, 9]. This issue becomes
even more important when focus is shifted from
distributed application limited in space, to
distributed application whose environment is spread
all over the Internet. None of the Java-based MA
platform provides a comprehensive, effective
location management system. In any case these
mechanisms are strictly tied with the platform that
they are designed for without exploiting existing
techniques for searching or locating objects in the
Internet. When a global environment such as the
Internet is considered, a centralized naming protocol
quickly becomes a bottleneck for the system,
providing poor performance. Distributed techniques
and algorithms are often more effective even if their
implementation is more difficult [14], [13].

For example, [16, 17] defined a naming and
ATP mechanism; [18] used a middle -agent method
and [19] adopted a matchmaking scheme. But none
of these systems considered the performance
overheads caused by mobility management,
especially in case of highly dynamic and large scale
MAs. Such systems need to update their locations
more frequently, more network resources, more
server storage and associated computation on both
sides are required. The same happens given large
scale of MAs.

Di Stefeno et al [2] have developed a Search-by-
Path-Chase (SPC) protocol. They have assumed that
a network is divided into regions and then into sites.
Two types of registers are used in which an agent
has to register or update its location information,

whenever it has to migrate from one site to another.
This registering and location updates result in time
and network overhead. It increases migration time
and ultimately total trip time of the agent. SPC
protocol mainly concentrates on providing increased
interaction efficiency.

Location management is an important issue in
MA computing. It consists of location updates,
searches and search-updates: An update occurs
when a MA changes location. A search occurs when
a MA/host wants to communicate with a MA whose
location is unknown to the requesting agent/host. A
search-update occurs after a successful search, when
the requesting agent/host updates the location
information corresponding to the searched MA. The
goal of a good location management protocol should
be to provide efficient searches and updates. The
number of messages sent, size of messages and
distance the messages need to travel, characterize
the cost of a location search and update protocol. An
efficient location management protocol should
attempt to minimize all these quantities. Hence, a
new protocol is required that would generate
minimum overhead and be suitable for both global
and local area networks.

This paper reports several location management
protocols based on a hierarchical tree structure
database. It also reports on the results of
implementations carried out to evaluate the
performance of proposed location management
protocols for various call and mobility patterns.
PMADE, developed at IIT Roorkee, is used as the
development platform [11].

The rest of the paper is organized as follows:
Section 2 presents an overview of PMADE. Section
3 reports on a system model for a distributed system
with MAs. Section 4 presents proposed location
management protocols and Section 5 presents
implementation details. Evaluation results are
shown in Section 6. Section 7 gives related works
and Conclusions are given in Section 8.

2 Overview of PMADE
Figure 1 shows the basic block diagram of PMADE.
Each node of the network has an Agent Host (AH),
which is responsible for accepting and executing
incoming autonomous Java agents and an Agent
Submitter (AS) [10], which submits the MA on
behalf of the user to the AH.

A user, who wants to perform a task, submits
the MA designed to perform that task, to the AS on
the user system. The AS then tries to establish a
connection with the specified AH, where the user
already holds an account. If the connection is

 3

established, the AS submits the MA to it and then
goes offline. The AH examines the nature of the
received agent and executes it. The execution of the
agent depends on its nature and state. The agent can
be transferred from one AH to another whenever
required. On completion of execution, the agent
submits its results to the AH, which in turn stores
the results until the remote AS retrieves them for the
user.

Mobile Agent’s Result

Mobile Agent with Task

User Agent
Submitter

Manager Modules
Host Driver

Agent Host

Figure 1. Block Architecture of PMADE

The AH is the key component of PMADE. It

consists of the manager modules and the Host
Driver. The Host Driver lies at the base of the
PMADE architecture and the manager modules
reside above it. It is the basic utility module
responsible for driving the AH by ensuring proper
co-ordination between various managers and
making them work in tandem. Details of the
managers and their functions are provided in [11].
PMADE provides weak mobility to its agents and
allows one-hop, two-hop and multi-hop agents [12].

3 System Model
In PMADE, agent location is based on some
assumptions for the distributed environment, as
shown in Figure 2. We have assumed that the global
network environment is divided into network
domains, regions (subnetworks) and agent hosts
(local sites). Further, there is a domain management
server (DMS) in each network domain which has
information about all other DMSs in the global
network. It also has information about all the
regions in the network domain. It is responsible for
maintaining uniqueness of names of regions, which
are part of that network and helps to identify the
region in which an agent is present.

Each DMS maintains a Domain Agent Database
(DAD), for information about the current location of
all agents which were created in that domain or
transited though it. Every region maintains
information about all AHs which are part of that
region. An AH can be a member of an existing
region or can start in a new region. In each region, a
Region Agent Database (RAD) is present at an AH

which runs at the gateway of a subnetwork. It
contains location information about each agent
which was created in that region or transited through
it. This host acts as the Agent Name Server (ANS)
[35], which manages the RAD. ANS is responsible
for maintaining uniqueness of names of all MAs,
created in that region. When a new agent is created,
the user assigns a name to it by registering in the
RAD of its birth region.

Internet

Network Domain 1

DMS

Gateway

Site

Network Domain 3 Network Domain 2

Subnetwork/
Region

AH

DAD

RAD

Network domain

Region

Figure 2. Structure of a Distributed Environment

Each entry of DAD of the form ()rFDA ,,
represents that agent A can be found in region r of
the foreign network domain FD , or it has transited
from that network domain or region. Each entry of
RAD of the form ()NilrA ,, represents the region
r where agent A was found or transited through it.
Similarly ()AHNilA ,, represents an agent A
which exists in that region at AH . For DAD and
RAD, the primary key is the agent name A .

Agent migration from one network domain to
another is always accomplished through the DMS.
During inter domain migration the agent has to
update location information in the DAD of the
present domain and register in the DAD of the target
network domain.

For intra region migration, it has to update its
location information in the RAD of that region. This
is an Intra Region Location Update. During inter
region migration, the agent has to update the
location information in the RAD of present region
and register in the RAD of the target region,
specifying the host in that region to which it is
migrating. Any location protocol for MAs deals with
three aspects: name binding, migration and
location, each related to a particular phase in the
agent’s lifetime. We have defined four atomic
operations on DAD and RAD.
• bind operation is performed when a name is

assigned to a newly created MA, whose birth

 4

location is also stored. This operation causes the
insertion of a new tuple in the database. As the
agent name has to be unique, this operation fails
if a tuple with the same name already exists in
the database.

• newloc operation is performed when the agent
changes its location, by migrating to a new one.
This operation updates the tuple already present
in the database.

• find operation is performed when an agent has
to be located in order to interact with it. For a
given agent name, this operation returns the
current location of the agent.

• unbind operation is performed when an agent
name is no longer used (i.e., the agent has been
disposed off). This operation causes the deletion
of the relative tuple from the database.

Mobile networks generally comprise of a static

backbone network and a wireless network. There are
three distinct sets of entities, namely MAs, MHs and
fixed hosts. A host that can move while retaining its
network connection is called a MH. The static
network comprises of the fixed hosts and the
communication links between them. Some of the
fixed hosts, called base host (BH) are augmented
with a wireless interface, and they provide a
gateway for communication between the wireless
network and the static network [8]. Due to the
limited range of wireless transreceivers, a MH/MA
can communicate with a BH. The geographical area
covered by a region is a function of the medium
used for wireless communication. Currently, the
average size of a region is of the order of 1-2 miles
in diameter. As the demand for services increase, the
number of regions may become insufficient to
provide the required grade of service. Region
splitting can then be used to increase the traffic
handled in an area without increasing the bandwidth
of the system. A MA communicates with one BH at
any given time. The BH is responsible for
forwarding data between the MH/MA and the static
network. Due to mobility, MH/MA may cross the
boundary between two regions while being active.
Thus, the task of forwarding data between the static
network and the MH/MA must be transferred to the
new regions. This process, known as handoff, is
transparent to the mobile user [6, 1]. The initiative
for a handoff can come from the MH or the BHs.
Handoff helps to maintain an end-to-end
connectivity in the dynamically reconfigured
network topology.

4 Location Management Protocol
A location management protocol is a combination of
a search protocol, an update protocol, and a search-
update protocol. Only the location management
protocols in the absence of a home location server
(HLS) are discussed in the paper.

4.1 Logical Network Architecture (LNA)
A Global network consists of MAs, MASs and
location servers (LSs). The logical network
architecture (LNA) is a hierarchical structure (a tree
with H levels) consisting of BHs and LSs. As
shown in Figure 3, the BHs are located at the leaf
level of the tree. Each BH maintains information
about the agents residing in its region. The other
nodes in the tree are called LSs. Each LS maintains
information regarding MAs residing in its subtree.

Each communication link has a weight attached
to it. The weight of a link is the cost of transmitting
a message on the link. Let [][]destsrcl represent

the link between nodes src and dest , and let ()lw
represent the weight (or cost) of link l . The cost
depends on the size of the message, the distance
between the hosts (agents), and the bandwidth of the
link. For analysis purposes, we assume that, for all
l , () 1=lw . Essentially, the cost metric is the
number of messages sent.

LS

LS LS LS

LS

LS

Root (DMS)

BH
Region

Figure 3. Logical Network Architecture

4.2 Data Structures
There is a unique “home” address for every MA.
The home address is the identifier/name of the MA.
The “physical” address of a MA might change, but
its home address remains the same, irrespective of
the agent location [8], [2]. Each LS maintains an
address matching table that maps the home address
to the physical address of the MAs residing in the

 5

subtree beneath it. Thus, the problem of location
management basically focuses on the management
of the address matching tables.

There is a location entry in a LS corresponding
to an agent A , if it is in a region in the subtree
under LS. If A moves to a region which is not in
the subtree under LS, then the entry corresponding
to A is updated at LS. All the nodes maintain
location information using 3-tuples which have the
following elements:

(i) MA identifier (id) (given by agent naming

server),
(ii) Forwarding pointer destination (destfp _),

and
(iii) Time at which last forwarding pointer

update took place (timefp _).

Each LS maintains a 3-tuple for each MA

residing in the subtree beneath it, and each BH
maintains a 3-tuple for each MA residing in its
region. The default value of destfp _ and

timefp _ is NULL. If the destfp _ field of an
agent A is NULL in LS L , then, A is not in a
region in the subtree under L . Let us suppose that
we are using a protocol which uses forwarding
pointers for location updates. Let A reside initially
in the region r . The BH of region r will have an
entry (A , NULL, NULL). Let there be a LS L
which maintains information about the agents
residing in r . There will be an entry (A , r , NULL)
corresponding to A at L . Let A move to a new
region 'r , which is not a part of the subtree of L .
Let t be the local time at the BH of r when change
of location of A is recorded at BH. Let 't be the
local time atL when the change of location of A is
recorded at L . Thus, the location information of A
will be ()'' ,, trA at L and ()trA ,, ' at BH of region
r .

Note: The above data structures
contain timefp _ field to store time. The timefp _
entry for a data structure on a node, sayv , contains
the local time at node v when the data structure was
last modified. We will denote this time by t in the
following. It should be noted that the correctness of
the algorithms does not require the clocks at various
nodes to be tightly synchronized.

4.3 Initial Conditions
It is assumed that, initially location information of
the MAs is stored in the corresponding LSs, i.e.,

each LS has the correct location information for all
the agents residing in the region in its subtree. Thus,
the root LS should have the correct location
information of all agents in the system. In Figure 4,
nodes 71−LS are LSs, and 158−BH are BHs. There

are two MAs 1A and 2A . In the initial state, agent

1A is in region 8, and 2A is in region 12. Initially,

the correct location information of agent 1A will be
available at LSs 4LS , 2LS and 1LS . Likewise, the

location information of 2A will be available at LSs

6LS , 3LS and 1LS . Thus, the location information
of an agent is available at all the LSs located on the
path from its current BH to the root.

Figure 4. Example of Proposed Network
Architecture

4.4 Update Protocol
The protocol for updating the location information
at the LSs and the BHs, when a MA moves, is as
follows: Let src and dest be the source and
destination regions, respectively. Let A be the
identifier of the MA. Let t denote the local time at a
node when a change in location of A is recorded at
that node. The value of t will be different at
different nodes. For this protocol we have
considered three cases as follows:
Case 1: Single Updates (SU): In this the update
takes place only at the BH of the source and
destination regions. A forwarding pointer is kept at
the source BH. The updated entry at the source BH
becomes ()tdestA ,, . An entry for agent A ,
()NULLNULLA ,, is added at the destination BH.
The location information at the LSs are not updated.
The cost of update is zero, because there is no
update message being sent.
Case 2: Full Updates (FU): Upon a move, apart
from BHs involved (i.e., BH of the source and
destination regions), location updates take place in

BH15

BH14
4

BH9

BH8

BH11

BH10

LS1

LS7

LS6

LS3

LS2

LS5

LS4

BH13

BH12

A1

LSs

BH

A2

 6

all the LSs located on the path from the BH of the
source and destination region to the root. Details are
as follows:

Source region:
1. At the BH: For agent A , set destdestfp =_ ,

and ttimefp =_ . The updated entry for agent

A at the BH becomes ()tdestA ,, .
2. All LSs on the path from src to the root: The

BH of src sends update message to these LSs.
Upon receipt of the update message, the LSs
update the entry for A to ()tdestA ,, .

Destination region:
1. At the BH: An entry ()NULLNULLA ,, is

added for agent A . If there was an old entry
for A , it is overwritten by this new entry. At
any node, there can be only one entry per
agent.

2. All LSs on the path from dest to the root: The
BH of dest sends update message to these LSs.
Upon receipt of the update message the LSs
create an entry. If there was an old entry, it is
over written by this new entry.

Therefore, in an H-level tree, the update cost

(the cost metric is number of messages) per move is
()12 −H . Suppose in Figure 4, agent A moves

from 8BH to 14BH . A forwarding pointer to

14BH will be kept at 8BH . 8BH sends update

messages to LSs 4LS , 2LS and 1LS , and these

LSs also create a forwarding pointer to 14BH . An
entry for 1A will be made at 14BH . 14BH sends

update message to LSs 7LS , 3LS and 1LS , and

these LSs also make an entry for agent 1A .
Case 3: Limited Update (LU): Update in the
location information takes place at a limited number
of levels of LSs in the tree. Here, updates occur at

()Hm < lower levels of LSs on the path to the root.
Updates at these LSs are similar to the FU. The LSs
at levels higher than m are not updated. Thus, the
update cost per move is m2 . Let the value of m be
chosen to be 1. Suppose in Figure 4, agent 1A

moves from 8BH to 14BH . The forwarding pointer

to 14BH will be kept at 8BH . 8BH sends an update

message to 4LS , and 4LS maintains forwarding

pointer to 14BH . An entry for 1A will be made at

14BH . 14BH sends an update message to 7LS , who

makes an entry for agent 1A .

4.5 Search Protocol
If agent A in region R wants to communicate with
another agent 'A , A has to know the location of

'A . This requires that agent A search for agent 'A .
As stated earlier, we do not make explicit use of
HLSs for searches. The search process in the
absence of a HLS is as follows.
1. If the BH of R has no location information for

'A , it forwards the location query to the next
higher-level LS on the path to the root.

2. If the LS does not have any location information
for 'A , it again forwards the location query to
the next higher-level LS on the path to the root.

3. Repeat 1 & 2 until a LS which has location
information for 'A is reached.

4. If the location information (i.e., region
identifier, say S) for 'A is obtained, the
location query is forwarded to the BH of region
S . Agent 'A will either be in region S or the
BH will have a forwarding pointer
corresponding to 'A .

5. If 'A is in region S , the search is complete.
Else, a chain of forwarding pointers is traversed
until BH of the containing agent 'A is reached.

4.6 Search-Update Protocol
Location management becomes more efficient if the
location updates also take place after a successful
search. For example, suppose there is an agent
A that frequently calls 'A . It may be useful to

update the location information of 'A after a
successful search, so that if A calls again, the search
cost is likely to be small. The location information
update takes place at the BH of the caller agent. Let
agent A be the caller at the source, and 'A be the
agent to be searched at the destination host. Let the
location of A and 'A be K and 'K , respectively.
The ollowing are the three cases to update location
information upon a search.
Case 1: No Update (NU): There are no location
updates, the timefp _ field of the entry

corresponding to 'A at the BH on the search path is
updated to the current time at the BH. The cost is
zero. This is because the update of the time field
could be done during the search process itself, and

 7

no additional message needs to be sent for this
purpose. The update in timefp _ is done to avoid
purging of the forwarding pointer data at the BHs.
The purge protocol is explained in the next section.
Case 2: Jump Update (JU): A location update
takes place only at the caller agent’s BH, i.e., BH of
region K . The entry for 'A at the BH of region K is
set to ()tKA ,, '' , where t is the local time at the
BH when the location information is updated. This
update cost is 1. This is because only one message
needs to be sent from BH of 'K notifying the
location information of agent 'A .
Case 3: Path Compression Update (PCU): Upon a
successful search, a location update takes place at all
the nodes in the search path. All the LSs on the
search path have the entry of 'A updated to
()tKA ,, '' where t is the local time at the LS when
the location information is updated. All the BHs on
the search path including the caller agent’s BH have
an entry of 'A updated to ()tKA ,, '' , where t is the
local time at the BH when the location information
is updated. In Figure 4, let agent 1A calls agent 2A .
Suppose the location information of 2A is available

only at the 6LS , 3LS and 1LS . Using the search
protocol described previously, the search path will
be 121248 LSLSLSLSLS →→→→ . The

location updates take place at 4LS , 2LS and 1LS ,
and 8BH . The update cost is the length of the
search path that is in this example is 4.

4.7 Purging Protocol
We need to periodically purge the stale forwarding
pointers at the LSs and the BH. This should be done
in order to (i) save storage space at the nodes, and
(ii) avoid storing stale location information. We use
a design parameter called Maximum Threshold Call
Interval (MTCI) to decide whether to purge a
forwarding pointer information or not. Let the
current time be timecurr _ . If timefp _ ? NULL,
and MTCItimefptimecurr ≥− __ then the entry

for the agent is purged from the iBH . If some other
agents in the system which have recently used the
forwarding pointer information of iBH . In the LSs,
if MTCItimefptimecurr ≥− __ for MA, the
location entry for that agent is purged.

When SU and LU cases of update protocol are
used, the forwarding pointers at higher level LSs do

not get updated, and become stale. Thus, these
forwarding pointers get purged periodically.
However, some of the searches for the agent might
reach the higher levels. If the LSs at the higher
levels do not have information about the agent, the
root has to broadcast to determine the location. To
avoid this, the forwarding pointers at the LSs on the
path to the root from the current BH must be
updated periodically along with purging. The
current BH of each MA achieves this by sending a
location update message to the LSs on the path to
the root.

Note: the timefp _ value for an agent residing
in the region will be NULL. So we are considering
agents which are currently not residing in the BH’s
region and whose forwarding pointer information is
stored at the BH.

5 Implementation and Performance
Study
A tradeoff exists between the cost of updates (upon
moves and searches) and cost of searches. The
parameters that affect this tradeoff are (i) call
frequency, and (ii) mobility. This paper evaluates
the effects of mobility and call frequency on the cost
of updates, search-updates and searches. As stated
earlier, the location management protocol is a
combination of a search protocol, an update protocol
and a search-update protocol. The search protocol is
the same for all location management protocols. A
total of nine location protocols are obtained using
the above protocols for updates and search –updates.
We performed simulations to analyze the
performance of the proposed location management
protocols for various call frequency and mobility
values. The location management protocols
simulated were obtained by choosing one case of
update protocol (say UX, where UX = SU, FU or
LMU) and one case of search-update protocol (say
SY, where SY = NU, JU or PCU). Thus, the
location management protocol obtained is denoted
as UX-SY.

5.1 System Model
We assume a binary tree as LNA for the
simulations. The height of the tree is H . The
number of LSs in the network is () 12 1 −−H , and the
number of BHs (or the number of regions) is ()12 −H .
Physical proximity of the region under the same LS
is assumed. This will help in determining short and
long moves. The height H was chosen to be 10 for
the simulations (in existing networks like GSM or

 8

Internet, the height may be small, i.e., 3 or 4. Since a
binary tree was assumed for the simulations, we
needed to have higher number of levels to have a
sizeable number of regions in the network.
However, similar performance trends are expected
for other networks.) . Thus, there were 512 regions
in the network.

The main aim of the work was to develop
protocols for efficient searches and updates, i.e.,
reduce, the number of message due to location
updates, without increasing the number of messages
required for searches. Since the average message
delay is likely to be small compared to the intervals
between consecutive calls and moves, we ignore
message delays, i.e., the location updates and
searches are immediate.

Simulations were performed for two types of
environments: (i) arbitrary agent moves and
arbitrary caller agents, (ii) Short agent moves and a
set of caller agents. In type (i), the agent can move
to any location (region) and receive calls from any
other agent in the network. This is not necessarily
true in real life, but it gives a fair idea of the
performance of the location management protocols
in such extreme conditions. Type (ii) is closer to real
life mobile environments. Agents are expected to
make a lot of short moves to nearby destinations,
and are expected to receive calls from a specific set
of agents (e.g. family, business colleague’s agents).

It should be noted that we have assumed that the
caller agents are immobile.

5.1.1 Call-mobility distribution for type (i)
The time between moves of an agent is assumed to
follow an exponential distribution with a mean MT .
The destination region is chosen randomly among
512 regions. The time between calls for a caller
agent is assumed to follow an exponential
distribution with a mean CT . The caller agent’s
region is chosen randomly from among the 512
regions.

5.1.2 Call-mobility distribution for type (ii)
Type (ii) consists of generating calls from a specific
set of caller agents and short moves. One option to
generate short moves is to put an upper limit on the
length of the move, in terms of number of regions,
and randomly vary the length of the move within the
upper limit. For example, in Figure 4, if we keep an
upper limit of 1, agent 2A will be able to make the
next move to region 11 or 13. But, our LNA just
assumes proximity of regions which are under the

same LS. Thus, a move from 12? 11 is not
equivalent to the move from 12? 13.

Instead, we varied the number of levels of LSs,
where location information will be updated due to
the move, if FU were to be used. The number of
levels can be varied between 1 to ()1−H . Level 0
is the BH level. The lesser the number of levels
affected, the shorter is the length of the move. The
probability distribution function of the length of the
move in terms of height (number of levels) is

()() ()hH
HH

hp −
−−

= *
21

2
)(, shown in Figure 5.

1 →h ()1−H

()hp

Figure 5. Probability Distribution Function ()hp

The cumulative distribution function ()cdf is as

follows: ∑
=

=
h

x

xphcdf
1

)()(. We randomly chose a

height h based on the given probability distribution
region as h2 . Let the identifier of the current region
(i.e., the source region) be curr . Knowing the
height h andcurr , one can easily determine the
ancestor of curr at level h in the binary tree. Let it
be ls . Knowing ls , the set of destination region
possible is { }hhhh lslsls 22*,...,12*,2* ++ . A
destination region is chosen randomly [7]. This is in
coherence with the assumption of proximity of
regions under the same LS. The time between
moves of an agent is assumed to follow an
exponential distribution with mean MT .

In type (ii), for each MA, caller agents were
chosen from a specific set of regions. The size of the
set was chosen to be 20. The set was chosen
arbitrarily and regions were not necessarily
neighbouring. The calls always originated from
those regions. The time between calls for an agent is
assumed to follow an exponential distribution with
mean CT .
Purge was performed periodically at every MTCI
units of time. The value of MTCI was chosen to be
10 units of time.

 9

5.2 Cost model
As stated earlier, the cost of transmitting a message
over any link is 1. Therefore, the cost metric is
essentially the number of messages required for
each operation (search, update and search-update).
Thus, the cost of an update is the number of LSs
which update the location information of the agent.
The cost of a search is the number of LSs and BH
visited before locating the agent. Cost of a search-
update is the number of LSs which update the
location information of the agent.

The performance parameter is the aggregate
cost, defined as the sum of average update cost,
average search cost, and the average search-update
cost.

5.3 Experimental Results
Simulations were performed to analyze the
performance of the various location management
protocols. Results were obtained for the two types of
environments, Type (i) and (ii) The values of CT

and MT were both varied from 1 to 15 units of time.

The value of CT was changed to vary the time
interval between two successive calls. The value of

MT was changed to vary the mobility of the agent.

For example, 1=CT and 1=MT characterizes a
communication intensive and ultra mobile
environment.

Type (i): The average length of a move was 170,
and the average distance of a call was also 170. It
was observed that the SU-PCU protocol outperforms
all the other protocols for all values of MT and CT .
Therefore, we have only plotted the curves for SU-
PCU. The protocols using FU and LMU suffered
due to the high cost of updates upon each move. SU-
NU protocol suffered due to very high search costs.
Because the caller agents were arbitrary, SU-JU
protocol did not perform well in the update upon a
successful search was not helping in reducing the
search cost.

Figure 6 shows the aggregate cost for the SU-
PCU protocol as a function of CT for different

values of MT . As seen in the figure, the aggregate
cost increases, the calls become infrequent, and the
agents might have moved to new locations,
requiring new searches. Thus, the reduction in
search cost by path compression is not very
effective. It is also seen that the rise in aggregate
cost with CT is higher for lower values of MT .

Lower the value of MT , higher is the mobility, and

thus the search cost will be higher. At high values of

MT , the difference in the aggregate costs due to

different values of MT is low. This is because as

MT increases, the agent movement reduces. Beyond

a point, increasing MT does not affect the aggregate
costs, and the curves converge to a single curve.

Type (ii): The average length of a move was 9,
and the average distance of a call was 110. It was
observed that the SU-PCU and the SU-JU protocols
outperformed all the other protocols for all values of

MT and CT . In contrast to Type (i), SU-JU
performed well, because there is a specific set of
caller agents. Thus, the jump update at the caller
agent’s host is more effective in reducing the search
cost, because the caller agent calls the agent again
with a higher probability than in Type (i)
environment. Figure 7 shows the aggregate cost for
the SU-JU protocol and the SU-PCU protocol as a
function of CT for different values of MT . As can
be seen, SU-JU performs better than SU-PCU in
high-communication and low-mobility and low-
communication and high-mobility environments. In
these environments, the search cost for SU-PCU and
SU-JU are comparable. Since the search-update cost
is same as the search cost for SU-PCU is simply
twice the search cost. On the other hand, the average
search-update cost for SU-JU is less than or equal to
1. It should be noted that in cases where the caller
agent has correct information of the destination
agent (host), the search-update cost is zero. Thus,
the aggregate cost of SU-JU is lower than SU-PCU.
SU-PCU performs better for other values of MT and

CT because the search cost for SU-JU becomes
large compared to SU-PCU.

Figure 8 shows the average search cost for the
SU-JU protocol and the SU-PCU protocol as a
function of CT for different values of MT . As can
be seen, SU-PCU has a much lower search cost than
SU-JU. The search cost of SU-JU is slightly lower
than SU-PCU for high communication and low-
mobility environments.

It was noticed that performing search-updates
significantly reduced the search and aggregate costs.
For the assumed LNA, it is seen that the SU-PCU
protocol performs better than the other protocols for
most values of CT and MT . It is expected that SU-
PCU will perform well in other network models too.
For models with different costs associated with each
link, we expect the other proposed protocols to

 10

perform well, and sometimes better than the SU-
PCU protocol (for some values of MT and CT).

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16
Call Interval

A
g

g
re

g
at

e
C

o
st

Tm=1, SU-PCU

Tm=10, SU-PCU

Tm=15, SU-PCU

Figure 6. Aggregate Cost for type (i)

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12 14 16
Call Interval

A
g

g
re

g
at

e
C

o
st

Tm=15, SU-PCU

Tm=10, SU-PCU

Tm=1, SU-PCU

Tm=15, SU-JU

Tm=10,SLU-JU

Tm=1, SU-JU

Figure 7. Aggregate Cost for Type (ii)

Note: Tm and MT are identical

0
2
4
6
8

10
12
14
16
18

0 2 4 6 8 10 12 14 16
Call Interval

A
ve

ra
ge

 S
ea

rc
h

C
o

st

Tm=15, SU-PCU
Tm=10, SU-PCU
Tm=15, SU-PCU
Tm=15, SU-JU
Tm=10, SU-JU
Tm=1, SU-JU

Figure 8. Search Cost for Type (ii)

6 Evaluation Results
Our tests took place in a 10/100 MBps switched
LAN that connects 850 workstations and personal
computers, and is used by about 500 hundred
researchers and students. We ran PMADE equipped
with the developed protocols on several P-4, 3 GHz
machines. The AS node and agent host nodes have
256 MB main memory, while the LS (Agent Host at

the root) has 512 MB. We used the j2sdk 1.4.1 Java
Virtual Machine with native thread support.

First, we tested the capacity and performance of
our storage backend. The LS (root agent host) was
able to hold up to 4*106 entries before the system
ran out of memory {Figure 3}. This means that,
given an extreme of 8*108 Internet users (NUA
estimates there were more than 605.60 million users
online in the Internet on September 2002, [36]) each
running 100 MAs simultaneously, about 20,000 LSs
would be required to keep all entries. This is less
than 0.0057% of the hosts in the Internet, according
to ISC estimates (ISC estimates there were more
than 350,000,000 hosts in the Internet in January
2005, [37]) at the time of writing.

Next, we let up to eight agents/ASs send
requests concurrently. Table 1 gives the response
rates we measured in tests with a single agent/AS,
sorted by request type. Secured registration was
slowest, as could be expected. However, this type of
request is required only once per agent. In this test
the LS handled about 400 agent lookup requests per
second, which includes processing overhead at the
AS (ASs start requests parallel threads). Figures 9
and 10 show the response rates we measured for
concurrent lookup requests with one to eight
agents/ASs. With two or more agents/ASs, the
response rate jumps from about 210 requests per
second to roughly 332, and remains more or less
stable at this mark (with one agent/AS, the agent
host has idle time, with two or more it becomes
congested). Table 2 shows how response times
develop with an increasing number of agents/ASs.
With about 2626 agents/ASs, requests take longer
than 13 seconds to process, which causes network
connections to time out for few agents.

Table 1. This figure shows the size of request
packets, and average processing time of the
searching service with one agent/AS, by request
type. *The lengths marked which might differ
depending on the length of the stored location
reference.

Type Length Mean
Time

Requests/s Action of

Lookup 32 bytes 4.7 ms 313 Location
search

Registration
secured

431
bytes*

11 ms 15 Init

Update 103
bytes*

1 ms 150 Location
Update

Register
unsecured

103
bytes*

5 ms 270 LS

 11

Num
ber
of
Agen
t
Host

1 2 4 8 16 32 64 128 256 512

Num
ber
of
Agen
ts
/AS

1 2 4 8 16 32 64 128 256 512

Resp
onse
time

301
ms

572
ms

1
sec,
500
ms

2
sec,
3m
s

4
sec,
3
ms

6
sec,
6m
s

10
sec,
510
ms

21
sec,
21
ms

53
sec

154
sec,
100
ms

Table 2. Agent Response Time (It includes Agent
Migration Time, Agent Decryption Time,
User/Agent Authentication Time, Result Encryption
and Packaging Time).

Number of LSs 1 2 3 4
Agent Migration time when
LSs are active (ms)

145.7 147 148.1 150

Agent Migration time when
LSs are not active (ms)

140 140 140 140

Table 3. Effect of LSs on Agent Migration Time

(size of agent is considered 10.203 KB)

200

220

240

260

280

300

320

340

360

0 2 4 6 8 10
Number of hosts permanently accessing

the server

N
um

be
r

of
 r

eq
ue

st
s

ha
nd

lin
g

pe
r

se
co

nd

Figure 9. This figure shows the average number of
requests that can be handled by the LS, depending
on the number of ASs/agents that query the server
concurrently. A circle mark represents the mean of a
set of 6000 measured values.

We also measured the impact of the location
service (search and update) integration on the
migration time of MAs in the PMADE. Without
location service integration, we measured an
average of 140 milliseconds per migration of a
simple benchmark agent, compared to with location
service (search & update), which we consider
tolerable {Table 3}.

0

5

10

15

20

25

30

0 2 4 6 8 10
Number of hosts Permanently Accessing

the Server

P
ro

ce
ss

in
g

 T
im

e
p

er
 R

eq
u

es
t

(m
s)

Figure 10. This figure shows how response times of
the LS develop with an increasing number of
ASs/agents that queries the LS concurrently. A
circle mark represents the mean of a set of 6000
measured values.

7 Related Work
In the literature, several approaches [2, 13, 20]
described the problems of locating MAs. Di Stefano
et al. [2] propose the use of LSs, where each server
is responsible for all agents in its domain. Each
agent has a home server that can be derived from a
location-specific part of the agent’s name.
Whenever the agent enters a new domain, the
servers responsible for the old and new domain, as
well as the home server are updated. Lookups for
agents not in the local domain start at the home
server. Lazar et al. [13] used DNS like name solving
to find the latest location of a MA in specific
domain gateways. One approach [21] used location
transparent routing in MASs that merges name
lookups with routing. However, these approaches
cannot solve the performance problem in case of
large scale of MAs. Pitoura [23] suggested an
efficient hierarchical scheme for locating highly
mobile users.

There are also approaches [22, 20] that use
automating directory services for tracking MAs. But
these approaches cannot give an optimal solution for
the lack of a suitable cost formulation. The problem
lies in that they do not consider the performance
overheads caused by a single location update
operation, O. Shehory [24] proposed a scalable
agent location mechanism which considers the
overall system overheads. The Globe [32] system is
a distributed directory designed to support billions
of references to mobile objects. However, the
authors acknowledge that their hierarchical
approach is not scalable enough to fulfil this goal

 12

due to the enormous storage demands and relatively
large number of requests that must be handled by
higher-level directory nodes. In order to overcome
these problems, they propose to use the first bits of
an object’s globally unique handle as the identifier
of directory subnodes, which share the load on their
directory level. This approach equals the one we
chose in order to provide scalability.

Although several major MASs have developed
some locating mechanisms [16, 17], they did not
consider mobility management for large-scale MAS.
So their applications are quite limited. Several other
schemes for locating MAs, and routing messages
among them were proposed in the past, e.g. [27, 30,
28, 33, 7]. Some of these approaches assume that
there is a logical network of connected MASs [27, 7,
30], and routing of agents or messages is done along
the edges of this graph. In the case of [7], the graph
must actually be a balanced tree. However, any
approach that builds on a particular network
topology makes sense only if MASs are
implemented on the network layer as part of routers.
Most of the contemporary MASs are implemented
on the application layer, though. From the
perspective of the application layer, the Internet is a
fully connected graph. Hence, a logical topology
that is layered on top of the physical structure of the
Internet creates undesired and unnecessary routing
overhead. The logical routing may even run counter
to the actual physical routing.

Additionally, the approaches described in [27,
7] put the burden of setting up and maintaining the
logical structure on administrators; a job that, in our
opinion, quickly spirals out of control. In particular,
the approach described in [27] is not scalable. Each
node in the tree has storage requirements
proportional to the number of MAs managed by it,
and update rates proportional to the rate of
migrations that start or end in its subtree. In
particular, the root node has to cope with all of the
traffic. Protocols based on forwarding pointers and
dynamic for shortening of pointer chains are
proposed, e.g. in [29, 31]; they are also used in Mole
for the purpose of orphan detection [26]. The
disadvantage of this approach is its lack of
robustness, a single broken or timed-out link makes
the agent unreachable. The Mobile Object
Workbench [28] supports a hierarchical directory
service for locating objects that moved.
Wojciechowski et al [33] use a combination of
registering and forward references. Forward
references act as a cache. In case of a miss, the
central server is asked to forward the message, and
the invalid forward reference is updated. The

approach let each agent hold a mostly accurate
contact list of other agents it knows. An agent’s
location can be found by consulting these contact
lists dynamically maintained by some neighbour
agents. This scheme can only work under the
assumption of low movement frequency (hence, less
updates of an agent’s contact list). So, it is not
suitable for a highly dynamic scenario. A scalable
hierarchical protocol is not only the main concern of
our research presented here, we have developed a
novel location management protocol in which a set
of protocols implemented and an agent dynamically
can select as per requirement to establish
communication link to the communicating party.
Selection of protocol depends on the network
topology.

8 Conclusion
In this paper we have presented several location
management protocols based on a hierarchical tree
structure database. These location management
protocols use one combination of search, update and
search-update protocols throughout the execution.
Simulations were carried out to evaluate the
performance of the various location management
protocols. It was noticed that performing search-
updates significantly reduced aggregate costs. For
the assumed LNA, it is found that the SU-PCU
(combination of single updates and path
compression search-update) protocol performs better
than the other protocols for most values of
communications rate CT and mobility MT . It is
expected that SU-PCU will perform well with other
network models too. We have also applied these
protocols in the real life application implementation
developed on PMADE. It is found that overhead
generated by them does not affect the actual agent
response and migration times.

References
[1] Bar-Noy, I. Kessler, and M. Sidi, “Mobile

Users: To update or not to update?” ACM-
baltzer J. Wireless Networks Vol. 1, No. 2
175-186, July 1995.

[2] Di Stefano and C. Santoro, “Locating Mobile
Agents in a Wide Distributed Environment,”
IEEE Transaction on Parallel & Distributed
Systems, 13(8): 844-864, Aug. 2002.

[3] R. Tripathi, T. Ahmed and N. M. Karnik,
“Experiences and Future Challenges in
Mobile Agents Programming,”
Microprocessors and Microsystems, 25(2):
121-129, April 2001.

 13

[4] E. Pitoura and G. Samaras, “Locating Objects
in Mobile Computing,” IEEE Transaction on
Knowledge and Data Engineering, 13(4): 571-
592, 2001.

[5] G. P. Picco, “Mobile Agents: An
Introduction,” Microprocessors and
Microsystems, 25(2): 65-74, April 2001.

[6] Kimberly Keeton, Bruce A. Mah, Srinivasan
Seshan, Randy H. Katz, and Domenico
Ferrari, “Providing connection oriented
network services to mobile hosts,” in the
Proceedings of the USENIX Mobile &
Location-Independent Computing
Symposium, Cambridge, Massachusetts,
August 2-3, 1993, pp. 1-32.

[7] M. Spreitzer and M. Theimer, “Providing
Location Information in a Ubiquitous
Computing Environment,” in Proceedings of
the 14th ACM symposium on Operating
systems principles, Asheville, North Carolina,
USA, Dec. 05 - 08, 1993, pp. 270-283.

[8] R. B. Patel, “Design and Implementation of a
Secure Mobile Agent Platform for Distributed
Computing,” PhD thesis, Department of
Electronics and Computer Engineering, IIT
Roorkee, India, 2004.

[9] R. J. Flower, “The complexity of using
forwarding address for decentralized object
find,” in Proceedings of the fifth annual ACM
symposium on Principles of distributed
computing, Calgary, Alberta, Canada Aug.
11 - 13, 1986, pp. 108-120.

[10] R.B. Patel and K. Garg, “A New Paradigm for
Mobile Agent Computing,” WSEAS
Transaction on Computers, Issue 1, Vol. 3, pp.
57-64, Jan. 2004.

[11] R.B. Patel and K. Garg, “PMADE – A
Platform for mobile agent Distribution &
Execution,” in Proceedings of 5th World
MultiConference on Systemics, Cybernetics
and Informatics (SCI2001) and 7th
International Conference on Information
System Analysis and Synthesis (ISAS2001),
Orlando, Florida, USA, July 22-25, 2001, Vol.
IV, pp. 287-293.

[12] R.B. Patel and K. Garg, “Providing Security
and Robustness to Mobile Agents on Open
Networks,” in Proceedings of 6th International
Conference on Business Information Systems
(BIS 2003), Colorado, Spring, USA, June 4-6,
2003, pp. 66-74. (Received Best Paper
Award).

[13] Sashi Lazar, Ishan P. Whereon, Deepinder P.
Sidhu, “A Scalable Location Tracking and

Message Delivery Scheme for Mobile
Agents,” in Proceedings of the 7th Workshop
on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE '98), Palo
Alto, CAUSA, June 17-19, 1998, p.243-249,
IEEE Computer Society.

[14] V. Roth and J. Peters, “A Scalable and Secure
Global Tracking Service for Mobile Agents,”
in Proceedings of the 5th International
Conference on Mobile Agents (MA2001),
Atlanta, Georgia, USA, G. Picco (Ed.), LNCS
2240, Springer Verlag, 2001, pp. 169-181.

[15] W. S. E. Chen, C.W.R. Leng, “A Novel
Mobile Agent Algorithm,” in Proceedings of
the first International workshop on Mobile
Agents (MA97), K. Tothermel, R. Popecu-
Celetin, (eds.) LNCS 1219, Springer Verlag,
Berlin, Germany, April 7-8, 1997, pp. 162-
173.

[16] Karjoth, G., Lange D.B., and Oshima, M., “A
Security Model for Aglets,” IEEE Internet
Computing 1(4): 68-77, July-Aug. 1997.

[17] Lange, D.B., and Oshima, M., “Programming
and Deploying Java™ Mobile Agents with
Aglets™,” Addison-Wesley, ISBN 0-201-
32582-9, Aug. 1998.

[18] K. Decker, K. Sycara, and M. Williamson,
“Middle-agents for the Internet,” in
Proceedings of International Joint
Conferences on Artificial Intelligence (IJCAI-
97), Nagoya, Aichi, Japan, Aug. 23-29, 1997,
pp. 578-583.

[19] D. Kuokka and L. Harada, “Matchmaking for
Information Agents,” in Proceedings of the
14th International Joint Conference on
Artificial Intelligence (IJCAI95), Montreal,
Quebec, Canada, Aug. 20-25, 1995, pp. 672-
679.

[20] H. Maass. “Location-aware Mobile
Applications Based on Directory Services”.
Mobile Networks and Applications 3 (1998)
157–173, Baltzer Science Publishers BV,
1998.

[21] W. Van Belle, K. Verelst and T. D’Hondt,
“Location Transparent Routing in Mobile
Agent Systems Merging Name Lookups with
Routing” in Proceedings of the 7th IEEE
Workshop on Future Trends of Distributed
Computing Systems (FTDCS 99) Dec. 20-22,
1999, Cape Town, South Africa, pp. 207-213.

[22] P. Stanski, D. Thompson, M. Nzama, A.
Zaslavsky, N. Craske, “Automating directory
services for mobile agent tracking,” in IEEE
Global Telecommunications Conference

 14

(GLOBECOM ’98), Nov. 8-12, 1998, Sydney,
Australia, pp. 1947 –1951.

[23] Evaggelia Pitoura and Ioannis Fudos; “An
efficient hierarchical scheme for locating
highly mobile users,” in Proceedings of the
7th international conference on Information
and knowledge management (CIKM '98),
Bethesda, Maryland Nov. 3-7, 1998, pp. 218 –
225.

[24] Onn Shehory. “A Scalable Agent Location
Mechanism,” in Proceedings Intelligent
Agents VI: Agent Theories, Architectures, and
Languages: 6th International Workshop
(ATAL’99), Orlando, Florida, Usa, July 15-
17, 1999, Lecture Notes in Artificial
Intelligence, Intelligent Agents VI, M.
Wooldridge and Y. Lesperance (Eds.), pp.
162-172.

[25] Tie-Yan Li, Kwok-Yan Lam, “An optimal
location update and searching algorithm for
tracking mobile agent,” in Proceedings of the
First International Joint Conference on
Autonomous Agents and Multiagent Systems,
Bologna, Italy, July 15-19, 2002, pp. 639-646.

[26] Joachim Baumann and Kurt Rothermel, “The
Shadow Approach: An orphan detection
protocol for mobile agents,” in Rothermel and
Hohl [34], pp. 2–13.

[27] L. Bernardo and P. Pinto, “A scalable location
service with fast update responses,” in IEEE
Global Telecommunications Conference
(GLOBECOM ’98), Nov. 8-12, 1998, Sydney,
Australia, pp. 2876–2881, 1998.

[28] Michael Bursell, Richard Hayton, Douglas
Donaldson, and Andrew Herbert, “A Mobile
Object Workbench,” in Rothermel and Hohl
[34], pp. 136–147.

[29] Luc Moreau, “Distributed directory service
and message routing for mobile agents,”
Technical Report ECSTR M99/3, Department
of Electronics and Computer Science,
University of Southampton, U.K., Nov. 1999.

[30] Amy L. Murphy and Gian Pietro Picco,
“Reliable communication for highly mobile
agents,” in Proceeding of the First
International Symposium on Agent Systems
and Applications, and Third International
Symposium on Mobile Agents (ASA/MA
’99), Oct. 3-6, 1999, Palm Springs, CA, USA,
pp. 141–150.

[31] Peter Sewell, Pawel Wojciechowski, and
Benjamin Pierce, “Location-independent
communication for mobile agents: a two-level
architecture,” Technical Report 462,

Computer Laboratory, University of
Cambridge, U.K., April 1999.

[32] M. van Steen, F. J. Hauck, P. Homburg, and
A. S. Tanenbaum, “Locating Objects in Wide-
Area Systems,” IEEE Communications
Magazine, pp. 104–109, Jan.1998.

[33] Pawel Wojciechowski and Peter Sewell,
“Nomadic Pict: Language and Infrastructure
Design for Mobile Agents,” in Proceeding of
the First International Symposium on Agent
Systems and Applications, and Third
International Symposium on Mobile Agents
(ASA/MA ’99), Oct. 3-6, 1999, Palm Springs,
CA, USA, pp. 821–826.

[34] K. Rothermel and F. Hohl (eds), in
Proceedings of the Second International
Workshop on Mobile Agents (MA’98),
Stuttgart, Germany, Sept. 9-11, 1998 Lecture
Notes in Computer Science, 1477, Springer
Verlag, Berlin Heidelberg.

[35] D.B. Terry, “Distributed Name Servers:
Naming and Caching in Large Distributed
Computing Environments,” Ph.D. thesis,
University of California, Berkely, 1985.
Available as UCB/CSD Tech. Rep 85-228 and
as Xerox PARC Tech. Rep. CSL-85-1.

[36] http://www.nua.com/surveys/how_many_online).
[37] http://www.isc.org/ds

