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Abstract:-In the paper we present a new class of neuro-fuzzy systems for pattern classification. The algorithm 
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11..  IInnttrroodduuccttiioonn  
In the last decade various classification methods 
have been proposed (see e.g. [8]). They are based on 
soft computing techniques, e.g. neural networks, 
fuzzy systems and genetic algorithms (see e.g. [1,2, 
4-7]). It is well known that neural networks are not 
able to incorporate a linguistic information coming 
from human experts. On the other hand traditional 
fuzzy systems suffer from the lack of learning 
properties. Therefore, several authors developed 
neuro-fuzzy systems (see e.g. [5-7, 9-11, 13]). They 
exhibit advantages of neural networks and fuzzy 
systems. In this paper we present a new class of 
neuro-fuzzy systems for pattern classification. Since 
it is well known that introducing additional 
parameters to be tuned in neuro-fuzzy systems 
improves their performance, we incorporate several 
flexibility concepts in the design of neuro-fuzzy 
systems. Moreover, we are able to choose a fuzzy 
inference (Mamdani or logical) in the process of 
learning. The performance of our approach is 
illustrated of a typical benchmark. 

22..  FFoorrmmaall  ddeessccrriippttiioonn  ooff  tthhee  bbaassiicc  
nneeuurroo--ffuuzzzzyy  ccllaassssiiffiieerr  

In this paper, we consider multi-input, single-output 
neuro-fuzzy inference system (NFIS) mapping 

YX → , where nRX ⊂  and RY ⊂ . 
  The fuzzifier performs a mapping from the 
observed crisp input space nRX ⊂  to the fuzzy sets 
defined in X . The most commonly used fuzzifier is 
the singleton fuzzifier which maps [ ] Xx ∈= nxx ,,1 K

 

into a fuzzy set X⊆′A  characterized by the 
membership function: 
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  The fuzzy rule base consists of a collection of N  
fuzzy IF-THEN rules in the form: 

 
( ) kkk ByAR  is  THEN  is  IF: x  (2) 

where [ ] Xx ∈= nxx ,,1 K
, Y∈y , k

n
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fuzzy sets characterized by membership functions 
( )iA
xk

i
µ , whereas kB  are fuzzy sets characterized by 

membership functions ( )ykB
µ , respectively, 

Nk ,,1K= . 
  The fuzzy inference determines a mapping from 
the fuzzy sets in the input space X  to the fuzzy sets 
in the output space Y . Each of N  rules (2) 
determines a fuzzy set Y⊂kB  given by the 
compositional rule of inference: 

 ( )kkk BAAB →′= o  (3) 

where k
n

kkk AAAA ×××= K21
. Fuzzy sets kB , 

according to the formula (3), are characterized by 
membership functions expressed by the sup-star 
composition: 
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where 
T

∗  can be any operator in the class of t-norms. 
It is easily seen that for a crisp input Xx ∈ , i.e. 
a singleton fuzzifier (1), formula (4) becomes: 



 

 
( ) ( )

( )
( ) ( )( )yI

y

yy

kk

kk

kk
n

kk

BA

BA

BAAB

µµ

µ

µµ

,

,

,
1

x

x

x

=

=

=

→

→××K
 (5) 

where ( )⋅I  is an “engineering implication” (Mamdani 
approach) or fuzzy implication. The aggregation 
operator, applied in order to obtain the fuzzy set B′  
based on fuzzy sets kB , is the t-norm or t-konorm 
operator, depending on the type of fuzzy implication. 
  The defuzzifier performs a mapping from a fuzzy 
set B′  to a crisp point y  in RY ⊂ . The COA (centre 
of area) method is defined by following formula: 
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in the discrete form, where ry  denotes centres of the 
membership functions ( )yrB

µ , i.e. for Nr ,,1K= : 

 
( ) ( ){ } max yy rr By
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Now, we propose a general architecture of NFIS. It 
includes both the Mamdani and logical type of 
inference: 
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where 
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and 
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Moreover, the firing strength of rules is given by 
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The general architecture of the above system is 
depicted in Fig. 1. 
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Fig. 1. General architecture of NFIS  
for pattern classification 

33..  FFlleexxiibbllee  nneeuurroo--ffuuzzzzyy  ccllaassssiiffiieerr  
Now we propose new structures of NFIS. The novel 
systems are characterized by: 
• soft strength of firing controlled by 

parameter τα , 
• soft implication controlled by parameter Iα , 
• soft aggregation of rules controlled by 

parameter agrα , 
• weights in antecedents of the rules: 

[ ] 10,w τ

i,k ∈ , ni ,,1K= , Nk ,,1K= , 

• weights in aggregation of the rules: 
[ ] 10agr ,wk ∈ , Nk ,,1K= . 

Moreover, we assume that fuzzy norms (and 
H-function) in connection of antecedents, 
implication and aggregation of rules are 
parameterised by parameters τp , Ip , agrp , 
respectively. 
The concept of adjustable triangular norms is based 
on the following definition: 
Definition 1. (Compromise operator) 
Function 

 [ ] [ ] 1,01,0:
~ →νN  (12) 

given by 
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is called a compromise operator where [ ] 1,0∈ν  and 

( ) ( )  1
~

0 aaNaN −== . 

Observe that 
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Definition 2. (H-function) 
Function 

 [ ] [ ] 1,01,0: →nH  (15) 

given by 
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is called an H-function where [ ] 1,0∈ν . 
Observe that 
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The NFIS for pattern classification is presented 
below: 
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Remark 1. We will explain how to modify formula 
(21) to solve multi-classification problems. Let 
[ ]nxx ,...,1

 be the vector of features of an object ν . Let 

{ }Mωω ,...,1=Ω  be a set of classes. The knowledge is 
represented by a set of N  rules in the form 
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where k
jz , Mj ,...,1= , Nk ,...,1= , are interpreted as 

“support” for class 
jω  given by rule ( )kR . We will 

now redefine description (22). Let us introduce 
vector [ ]Mzz ,...,1=z , where Mjz j ,...,1, = , is the 

“support” for class 
jω  given by all M  rules. We can 

scale the support values to the interval [ ]1,0 , so that 

jz  is the membership degree of an object ν  to class 

jω  according to all M  rules. The rules are 

represented by 
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and formula (21) adopted for classification takes the 
form 
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where r
jz  are centers of fuzzy sets r

jB , Mj ,...,1= , 

Nr ,..,1= . 

44..  SSiimmuullaattiioonn  rreessuullttss  
Neuro-fuzzy classifier, described by formulas 
(18)-(21), is simulated on Wine Recognition 
problem [12]. 
The experimental results for the Wine Recognition 
problem are depicted in Tables 1 and 2 for the 
not-parameterised (Zadeh and product) and 
parameterised (Dombi and Yager) H-functions, 
respectively. For experiment (iv) the final values 
(after learning) of weights [ ] 10,wτ

i,k ∈  and [ ] 10agr ,wk ∈ , 

13,,1K=i , 2,,1K=k , are shown in Fig. 2 (Zadeh and 
produt H-functions) and Fig. 3 (Dombi and Yager 
H-functions). 



 

Table 1. Experimental results for a) Zadeh triangular 
norms, b) product triangular norms 
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i ν 0.5 1.0000 1.0000 0.00 0.00 3.77 1.89 
ii ν 0 - - 0.80 0.80 3.77 3.77 

ν 0.5 1.0000 1.0000 

ατ 1 0.0004 0.0036 
αI 1 0.9907 0.9986 

iii 

αagr 1 0.9938 0.9908 

0.00 0.00 1.89 1.89 

ν 0.5 1.0000 1.0000 

ατ 1 0.0329 0.0180 
αI 1 0.9987 0.9756 

αagr 1 0.9896 0.9861 

wτ 1 Fig.2-a Fig.2-b 

iv 

wagr 1 Fig.2-a Fig.2-b 

0.00 0.00 0.00 0.00 

Table 2. Experimental results for a) Dombi 
H-function, b) Yager H-function 
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i ν 0.5 1.0000 1.0000 0.00 0.00 1.89 1.89 
ii ν 0 - - 0.00 0.00 3.77 3.77 

ν 0.5 1.0000 1.0000 
pτ 10 9.9999 10.0498 
pI 10 10.0005 9.9936 

pagr 10 9.9991 10.0014 
ατ 1 0.0032 0.0029 
αI 1 0.9911 0.9917 

iii 

αagr 1 0.9919 0.9920 

0.00 0.00 1.89 1.89 

ν 0.5 1.0000 1.0000 
pτ 10 7.8330 6.9528 
pI 10 11.7084 13.3122 

pagr 10 14.3699 12.1427 
ατ 1 0.0028 0.0389 
αI 1 0.9826 0.9740 

αagr 1 0.9914 0.9599 

wτ 1 Fig.3-a Fig.3-b 

iv 

wagr 1 Fig.3-a Fig.3-b 
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Fig. 2. Weights representation in the Wine 
Recognition problem for a) Zadeh triangular norms, 

b) product triangular norms 
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Fig. 3. Weights representation in the Wine 
Recognition problem for a) Dombi H-function, 

b) Yager H-function 
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