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Abstract: - The main purpose of this paper is to analyze the robust stability for a fuzzy vehicle steering control 
system. In general, fuzzy control system is a nonlinear control system. Therefore, the fuzzy controller may be 
linearized by the use of describing function first. After then, parameter plane method is then applied to 
determine the conditions of robust stability when the system has perturbed or adjustable parameters. A 
systematic procedure is proposed to solve this problem. The effects of plant parameters and control factors are 
both considered here. Furthermore, the problem of relative stability by using gain-phase margin tester is also 
addressed. The limit cycles provided by a static fuzzy controller can be easily suppressed if the control factors 
are chosen properly. Simulation results show the efficiency of our approach. 
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1 Introduction 
The describing function is a useful frequency 
domain approach for analyzing the stability of a 
nonlinear control system especially when the system 
has hard nonlinear elements, such as relay, deadzone, 
saturation, backlash, hysteresis and so on. The 
definition of describing function can be obtained 
from some reference books [1,2]. The applications 
of describing function have been widely developed 
in the academic and industry researches. For 
multivariable process control, a method for 
automatically tuning multivariable PID controllers 
from relay feedback was proposed in [3]. The 
describing function utilized for the stability analysis 
and limit cycle prediction of nonlinear control 
systems has been developed in [4]. The hysteresis 
describing function was applied to the class AD 
audio amplifier for modeling the inverter [5]. 
Recently, Chung et al [6] used the describing 
function method to linearise the nonlinear inductor 
and estimate the inductance in large current 
situations. Ackermann and Bunte [7] employed the 
describing function to predict the limit cycles in the 
parameter plane of velocity and road tire friction 
coefficient. In addition, some researchers have 
developed the experimental and analytic describing 
functions of fuzzy controller in order to analyze the 
stability of fuzzy control systems [8,9]. Furthermore, 
the describing function technique to design a fuzzy 
controller for switching DC-DC regulators was 

proposed by Gomariz et al [10]. The describing 
function was also applied to find the bounds for the 
neural network parameters to have a stable system 
response and generate limit cycles [11]. Generally 
speaking, the uncertainties are often existed in the 
practical control systems. It is well known that the 
frequency domain algorithms of parameter plane 
and parameter space [12-13] have been applied to 
fulfill the robust stability of an interval polynomial.  

In this paper, we extend the results in [9,10] to 
analyze the stability of a fuzzy vehicle steering 
control system under the effects of system 
parameters and gain-phase margins by the use of 
methods of describing function, parameter plane and 
gain-phase margin tester. A simple vehicle steering 
control model with perturbed parameters is cited to 
verify the design procedure.  
 
2 Problem Formulation 
In this section, the classical linearized single track 
vehicle model is given first. The describing function 
of static fuzzy controller is also introduced. In order 
to analyze the stability of perturbed parameters, a 
systematic procedure is proposed to solve this 
problem by the use of parameter plane method and 
gain-phase margin tester. 
 
2.1 Vehicle model [7] 
Fig. 1 shows the single track vehicle model and the 
related symbols are listed in Table 1. The equations 
of motion are 
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The tire force can be expressed as  
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with the tire cornering stiffnesses 0 0,f rc c , the road 
adhesion factor µ  and the tire side slip angles  
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The state equation of vehicle dynamics with β  and 
r  can be represented as  
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Hence, the transfer function from fδ   to r  is   
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The numerical data in this paper are listed in 
Table 2. According to the above analysis of a single 
track vehicle model, the transfer function from the 
input of front deflection angle fδ  to the output of 
yaw rate r  can be obtained as  
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      (6) 
The operating range Q  of the uncertain parameters 
µ  and v  is depicted in Fig. 2. 

In addition, the steering actuator is modeled as   
2

2 2
( )

2
n

A
n n

G s
s s

ω
ω ω

=
+ +

           (7) 

where 4nω π= .  
  In our study, a fuzzy vehicle control system is 
presented in Fig. 3. The open loop transfer function 

( )OG s  is defined as 
( , , ) ( ) ( , , )

fO A rG s v G s G s vδµ µ=          8) 
The control factors pk ,  dk  and uk  can be 
determined by the designer. By transferring Fig. 3 to 
Fig. 4, the overall open loop transfer function can be 
obtained as 
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2.2 Describing function of static fuzzy 
controller [9] 

The describing function 1N  of static fuzzy 
controller shown in Fig. 4 can be obtained, which 
depends only on the amplitude of A  and is 
independent of the frequency of ω , and can be 
expressed as follows:     
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where n  satisfies 1+Φ<≤Φ nn A , 0>n , and 
varies with A ; new variables }{ iδ  are defined to 
be the angles where the input sinusoidal signal  

sinx A δ=  intersects the centers of fuzzy 
membership functions ( iΦ ’s) as follows: 
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The detail definitions of n  and iδ ’s are visualized 
in [9]. 
 
2.3 Stability analysis of fuzzy vehicle control 

systems 
If the gain-phase margin tester jKe θ−  is added in 
the open loop of Fig. 4, the closed loop transfer 
function is  
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Case 1: Perturbed plant parameters 
Arrange (11), the following characteristic equation 
is obtained. 
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Let s jω= , 0dBK =  and 0θ = . (12) is divided 



into two stability equations with real part RX  and 
imaginary part IX  of characteristic equation, one 
has 
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In order to obtain the solution of µ  and v , the 
following equation is solved 
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when pk , dk , uk , 1N  are fixed and ω  is 
changed from 0 to ∞ . As the amplitude A  is also 
changed, the solutions of µ  and v  called limit 
cycle loci can be displayed in the parameter plane. 
Case 2: Control factors 
After some simple manipulations, the characteristic 
equation of (11) can be obtained as     
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Let s jω= , 0dBK =  and 0θ = . (15) is divided 
into two stability equations with real part and 
imaginary part of characteristic equation 
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Therefore, pk  and dk  are solved from (14) and 

(15) when µ , v , uk , 1N  are fixed and ω  is 
changed from 0 to ∞ , one has 
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Case 3:Gain-phase margin analysis 
The gain-phase margin tester can be expressed as  
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Let s jω= , (19) is divided into two stability 
equations with real part and imaginary part of 
characteristic equation 

( , , , , , , , ) 0p d u R I R If j k k k v K K X jXω µ = + = , (20) 
where 
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Therefore, RK  and IK  are solved from (14) 

and (15) when pk , dk , µ , v , uk , 1N  are fixed 
and ω  is changed from 0 to ∞ , one has 
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3 Simulation Rzesults 
In our work, five fuzzy rules and parameters are 
adopted and listed in Tables 3 and 4, respectively. 
Fig. 5 shows the premise triangle membership 
functions of fuzzy controller. The consequent parts 
are singletons. Fig. 6 shows the control surface of 
fuzzy controller. 
 
3.1 Plant parameter analysis 
If 0.2pk = , 0.3dk =  and 0.2uk =  are selected 



first, (14) can be solved when A  is fixed and ω  
is changed from 0  to ∞ . Fig. 7 shows the stability 
boundary and some limit cycle loci in the µ - v  
parameter plane. Two stability regions including 
asymptotically stable and limit cycle are divided. In 
order to verify the accuracy of Fig. 7, four operating 
points Q1-Q3 (limit cycle region) and Q4 
(asymptotically stable region) are illustrated for 
testing. Fig. 8 shows the time responses of input 
signal ( )x t . It is obvious that the results shown in 
Fig. 8 consist with the predicted results in Fig. 7. 
For examples, if Q1( 1µ =  and 70v = ) is chosen, 
the limit cycle occurs and the amplitude is 0.0465. 
Besides, if Q4 ( 1µ =  and 5v = ) is chosen, the 
system is stable and no limit cycle happens. On the 
other hand, if 0.1pk = , 0.27dk =  and 0.1uk =  are 
selected, Fig. 9 shows the stability boundary. We 
can find that no limit cycle will occur in the overall 
operating region Q (limit cycle free [7]).  

If  0.2uk = , 1µ =  and 70v =  are selected, (19) 
and (20) can be solved in the pk - dk  parameter 
plane when A  is fixed and ω  is changed from 0  
to ∞ . Fig. 10 shows the stability boundary and 
some limit cycle loci. Four testing points Q5-Q8 are 
illustrated. 

If Q8 ( 0.1pk = , 0.1dk = , 0.2uk = , 1µ = , 
70v = ) in Fig. 10 is selected, (23) and (24) can be 

solved in the RK - IK  parameter plane when A  is 
fixed and ω  is changed from 0  to ∞ . Because 
Q8 is in asymptotically stable region, the gain-phase 
margin tester can be viewed as a compensator to 
generate the limit cycle (from stable region to limit 
cycle region). For example, if 0.05A =  is expected, 
the related gain margin (Q9: GM 3.2= , 0θ = ) and 
phase margin (Q10: PM 46.6= , 1K = ) to generate 
limit cycles can be easily obtained in Fig. 11. On the 
other hand, when the original system is in limit 
cycle region like Q5-Q7, the related gain margin and 
phase margin to suppress limit cycle could be also 
obtained in the parameter plane. 
 
4 Conclusion 
Based on the parameter plane approach, the 
complete stability analysis of a fuzzy vehicle 
steering control system is proposed in this paper. A 
systematic procedure is presented to deal with this 
problem. In addition, the effects of control factor 
and gain-phase margins are also considered. 
Simulation results show that more information can 
be obtained by this approach. 
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Fig. 1 Single track vehicle model. 
 

TABLE I 
VEHICLE SYSTEM QUANTITIES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE II 
VEHICLE SYSTEM PARAMETERS  
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Fig. 2 Operating range. 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3 Block diagram of fuzzy vehicle control 
system. 

 
 
 
 
 
 
 
 
 
 

Fig. 4 Block diagram of fuzzy vehicle control 
system. 

 
TABLE III 

RULES OF FUZZY CONTROLLER 
 
 
 
 
 

 
TABLE IV 

PARAMETERS OF FUZZY CONTROLLER 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 5 Membership functions of fuzzy controller. 
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Fig. 6 Control surface. 
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Fig. 7 Limit cycle loci. 
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Fig. 9 Stability boundary. 
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Fig. 10 Stability boundary. 
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Fig. 11 GM and PM analysis. 

 
 


