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Abstract: - Recently public-key cryptosystems have been discovered based on braid groups. We present an algebraic key agreement protocol based on the difficulty of solving equations over algebraic structures. In our group theoretic illustration of our protocol its security is based on the same hard problems on which the recently discovered braid cryptosystems are based.
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1   Introduction

A key agreement protocol is an algorithm followed by two parties so that a secret key becomes available to the two parties for cryptographic applications [1]. We present a new algebraic key agreement protocol and give a group theoretic illustration of our protocol. The security of the protocol is based on the difficulty of solving equations over algebraic structures. The protocol involves each party to perform algebraic computations in the group theoretic illustration this is rewriting and multiplication and such results are transmitted over a public channel. When all such computations are finished a common secret key is obtained by each party after a second computation involving an algorithm that solves the word problem in the monoid or group.

     There is a simpler algebraic key agreement protocol it is the AAG (Anshel-Anshel-Goldfeld) protocol see [2], [3] and like our group theoretic protocol (given in the illustration below) its security is also based on the MSCSP (Multiple Simultaneous Conjugacy Search Problem) [10] in the  group theoretic  illustration given in [2]. This paper follows the analysis, style and notation of the paper [2]. The security of our group theoretic protocol is based on the GDP (Generalised Decomposition Problem) which is conjectured to be hard in a suitable group. The GDP is if y = axb, a, e(A, b, f(B where A, B are subgroups or monoids of a group G find e and f such that y = exf  with y and x are publicly known and a and b are secret. It follows from the definition of the DP (Decomposition Problem) in [6], [10] and CSP (Conjugacy Search Problem) in [2], [4], [10] that the GDP generalises the DP and CSP. 

     We consider groups in which the CSP, MSCSP and GDP are hard (by hard we mean there is no known algorithm to solve the problem being considered such that a cryptographic protocol based on the problem would then be insecure for practical use) and which have efficient (by efficient we mean an algorithm is useful for cryptographic purposes) algorithm(s) for the word problem and / or canonical form. We conjecture that the GDP is hard in Bn (the braid group of index n). Some reasons we think the above conjecture is true are an efficient algorithm to solve the GDP will solve the CSP which is hard in Bn [2], [4], [10] (but there is an inefficient algorithm to solve the CSP that has exponential running time [2], [4]) or solve the DP which is hard in Bn [6], [10]. There is no efficient algorithm to solve the MSCSP in Bn see [2], [10]. In Bn there is a polynomial time algorithm for a canonical form see [8]. Hence for our group theoretic protocol we suggest an implementation in using braid groups. There is a weak attack based on  the Burau representation and CSP on the AAFG1 braid group cryptosystem [3]. 

2 The Algebraic Key Agreement Protocol

The protocol which is a seven-tuple (T,U,V,W,β1,β2, γ) where T,U,V and W are feasibly computable monoids (S is understood to either be T,U,V or W), and

               β1 : U ( U ( T    β2 : U ( U ( S (V 

         γ : S ( S ( S (W 

are  feasibly computable functions satisfying the following properties.

(i) For all elements y, t1, t2 ( U

β1(y,t1 • t2) = β1(y,t1) • β1(y,t2) 

(ii) For all elements x1, x2, y1, y2, z ( T,U,V or W 

γ(β1(y1,x1-1),β1(y2-1,x2-1),z)  =  γ(y1,y2,β2(x1,x2,β2(y1,

y2,z))) 

(iii) Suppose e1, e2, ..., ek ( U and β1(e,e1), β1(e,e2), ..., β1(e,ek) are publicly known for some secret element e ( U. Then in general it is infeasible to determine the secret element for all such ei. 

(iv) Consider r2, for all r2 ( S and β2(r1,r3,r2) are publicly known for some secret elements r1,r3 ( U. Then in general it is infeasible to determine the secret element for all such r1 and r3.

1) A public submonoid X  ( U whose generators are {a1, a2, ..., ak} is selected. User A will use X. A public element z ( U is selected. 

2) User B is privately assigned a submonoid Y ( U whose generators are {b1,b2, ..., bn}. User B selects secret elements y1, y2 ( Y.

3) User B transmits β2(y1,y2,z) property (iv) ensures the elements y1,y2 remain secret with the transmission through the public channel. User B now selects the secret elements y1,y2-1 ( Y and transmits 

β1(y1, ai-1)      i = 1, 2, ..., k 

β1(y2-1,ai-1)    i = 1, 2, ..., k

it follows from property (iii) although the transmission is through a public channel then the elements y1, y2-1 are secure.

4) User A selects secret elements x1, x2  ( X. 

Recalling property (ii) which is 

κ = γ(β1(y1,x1-1),β1(y2-1,x2-1),z) = γ(y1,y2,β2(x1,x2 ,β2(y1, y2, z))) 

we see that κ can be used as the common key. User A calculates by using property (i) 

κ = γ(β1(y1,x1-1),β1(y2-1,x2 -1),z)

5) User A now transmits β2(x1,x2,β2(y1,y2,z)) through the public channel it follows from property (iv) that the elements x1,x2  are secure. 

6) User B now calculates 

κ = γ(y1,y2,β2(x1,x2,β2(y1, y2,z))) 

3   A Group Theoretic Protocol

In this illustration T = U = V = W is a group, denoted R. We suggest using braid groups for our protocol see [5], [7] for background of braid groups. Here the functions β = βi, i = 1, 2 are chosen to be

β1(q,s) = q-1s-1q,  β2(q,r,s) = qsr 

and the function γ is 

γ(u,w,v) = u-1vw-1. 

Multiplying group elements in the group can be performed by concatenating the group elements. The process of rewriting (there is more than one way to do this) involved in the calculation of β is such that no adversary can calculate the secret elements involved in the transmission of β through the public channel.

     β1 is the CSP and the conjugation function. β2 is the GDP. We see that the GDP is a version of the discrete logarithm problem (that is given elements g, gp in an algebraic structure compute p, for cryptographic applications it should be computationally not  feasible to gain p) for non-abelian groups. The security of the KLCHKP cryptosystem [4] is based on the CSP. The security of the CKLHC cryptosystem [8] (which is a generalisation of the KLCHKP cryptosystem) is based on the DP it follows from [8] that its security is based on the GDP with G = Bn and A and B are selected from the subgroups LBn, UBn. Hence the security of our protocol is based on the same hard problems as the above cryptosystems. 

1) A public subgroup X = <a1, a2, ..., ak> is selected. A public element z ( R is selected.

2) User B is privately assigned a subgroup Y = <b1, b2, ..., bn>. User B selects secret elements y1, y2 ( Y. 

3) User B transmits β2(y1,y2,z) = y1zy2 user B selects secret elements y1, y2-1 ( Y and transmits the elements 

y1-1a1y1, y1-1a2y1, ..., y1-1aky1 

y2a1y2-1, y2a2y2-1, ..., y2aky2-1 

An adversary observing the transmissions may find x1,x2 or y1,y2-1 if (s)he can solve a set of simultaneous conjugacy equations of the group (the MSCSP). 

4) User A selects secret elements x1,x2 ( X. User A computes by using property (i) and property (ii)

κ = γ(β1(y1,x1-1),β1(y2-1,x2-1),z) = y1-1x1y1zy2x2y2-1 

5) User A now transmits β2(x1,x2,β2(y1,y2,z)) = x1y1zy2x2 through the public channel it follows from property (iv) that the elements x1,x2 are secure. 

6) User B calculates 

κ = γ(y1,y2,β2(x1,x2,β2(y1,y2,z))) = y1-1x1y1zy2x2y2-1 

at this point both users need to ensure they have κ in the same form before any message(s) can be encrypted and transmitted. Obtaining a common identical element can be accomplished using a choice of different methods. If the canonical form algorithm is efficient in the group then this can be used. There are many groups where the algorithm for the word problem is efficient but the canonical form algorithm is not an algorithm to generate a common key using an algorithm for the word problem is described in [2]. 

     The software library given in [9] may be used to implement our group theoretic illustration in braid groups.

4   Conclusion

We have presented a new algebraic key agreement protocol and given an illustration of the protocol in using braid groups where its security is based on the CSP, MSCSP and GDP. Comparing our group theoretic protocol with the group theoretic protocol of AAG our protocol is as secure as the AAG protocol in a suitable group. Further work is required and this includes suggested parameters for our protocol in using braid groups we plan to give the further work and related work in [11]. 
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