
Reference Generation for Harmonics Cancellation 
RAFAEL CARDOSO AND HILTON ABÍLIO GRÜNDLING 

GEPOC – Grupo de Eletrônica de Potência e Controle 
UFSM – Universidade Federal de Santa Maria 

Centro de Tecnologia, Av. Roraima S/N, Camobi, CEP: 97105-900, Santa Maria - RS 
BRAZIL 

 
 

Abstract: - This paper presents two recursive schemes for current reference generation for shunt active filters 
under unknown fundamental frequency. The schemes are based on the liner Kalman filter that needs the 
knowledge of the fundamental frequency. In practice, the fundamental frequency of the power system grid can 
vary. If it differs from the fundamental frequency considered in the mathematical model used in the Kalman 
filter the estimates provided by the filter will not be accurate. This paper proposes the use of on-line 
identification of the fundamental frequency of the power system. The identified frequency is used to update de 
Kalman filter model. 
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1   Introduction 
The increasing use of nonlinear loads has implied in 
harmonic injection on power systems. Some 
drawbacks provided by these types of loads, 
according [1], are voltage distortion, increased losses 
and heating, and misoperation of protective 
equipment. The current harmonics can also increase 
losses in rotating machines. They are responsible for 
oscillatory torque that causes mechanical stress, leads 
to malfunctions in sensitive loads and can create 
interference with communication equipments [2]. 
Therefore, harmonics on power system have become 
an important issue for the electric utility companies.  
     Passive LC filters and capacitors have been used 
to eliminate line current harmonics and to increase 
the power factor. However, if the amplitude and 
frequency of the distortion power vary randomly, 
those conventional approaches become ineffective 
[2]. They also introduce resonances in the power 
system, tend to be bulky and the design can be 
complex [3]. 
     An alternative to the passive filters is the shunt 
active filter that permits to compensate the harmonics 
and asymmetries of the mains currents caused by 
nonlinear loads. For harmonic cancellation, the shunt 
active filter injects ac three-phase currents in the 
system to cancel the harmonic content. 
     The harmonic measurement and reference 
generation are important for the design and control of 
active filters. Moreover, the technique used to obtain 
the reference currents will have a decisive influence 
on their efficiency and performance [3] [4]. 
     Several authors have been addressed this subject 
using different techniques for obtaining the reference 
signal for the active filter. In [3] it is described the 
use of band-stop and band-pass filters. In [5] and [6] 

low-pass filters are used to generate the current 
references. These techniques are of simple 
implementation but, according [3], in practice, they 
suffer from residual current phase shift and 
magnitude. 
     Other methods of current reference generation are 
available. For instance, instantaneous active and 
reactive current component method [7], p-q theory 
method [8] among others. According [4] these 
techniques suffers from the influence of the distortion 
of the main voltage waveform. For digital 
implementations there is a delay due to the 
processing of the signal. 
     Another classic approach to obtain the current 
frequency spectra is the discrete Fourier transform 
(DFT) or the fast Fourier transform (FFT) algorithms. 
However, the application of the DFT or FFT relies on 
some basic assumptions, summarized in [9]. If one 
fails to fulfill the basic assumptions of DFT or FFT 
algorithms, they will lead to incorrect results. 
     In practice, the nonlinear loads operate at 
continuously variable power levels that result in a 
dynamic behavior of the harmonics in the system. 
Other practical aspects are the measurement noise 
and grid frequency variations. In strong grids, the 
frequency variations are usually small, but larger 
frequency variations occur in autonomous grids [10].  
     Under these practical issues, some authors 
proposed the use of the Kalman filter to estimate and 
track the harmonics of the grid [4], [9], [11] and [12]. 
In these formulations it is assumed that the frequency 
of the grid is known and is constant. 
     This paper proposes two on-line schemes, based 
on Kalman filter, for generation of the active filter 
current references. If the grid frequency differs from 
the assumed frequency in the mathematical model, 



the filter will provide erroneous tracking of the 
harmonics. In order to account for possible 
fundamental frequency changes, the first method 
makes use of a recursive least squares algorithm 
(RLS) that is responsible for the on-line identification 
of the fundamental frequency of the grid. Then, the 
identified frequency is used to update the 
mathematical model of the harmonics needed in the 
Kalman filter. The second method uses a nonlinear 
identifier proposed in [13] to update the Kalman filter 
model. 
     This paper is organized as follow: in section 2 it is 
presented the mathematical model for the harmonics 
and the parametrization used in one of the 
fundamental frequency identification methods (RLS) 
that are described in section 3. In section 4 the 
Kalman filter algorithm is summarized. Simulation 
results are given in section 5. 
 
2   Mathematical Modelling 
     This section describes how the harmonics 
mathematical model is obtained. This model is 
necessary for the implementation of the Kalman 
filter. It also describes de parametrization used in the 
RLS method for identification of the fundamental 
frequency. 
 
2.1 Harmonics Model 
Consider a signal with amplitude ( )ktA , angular 
frequency ω  and phase θ : 
 

( ) ( ) ( )θω += kkk ttAts cos  (1)
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k
cos1  and 

( ) ( )θω += kk ttAx
k

sin2 . At 1+kt , which is ttk ∆+  
the signal may be expressed [9] as: 
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     We also have 
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     Therefore, the signal state variable representation 
becomes: 
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where [ ]Tk21 γγ  allow the system to random walk 
and kυ  represents the measurement noise. 
     If the signal includes n  frequencies, that is 
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the state variable representation becomes: 
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where 
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2.2 Parametrization for Fundamental 

Frequency Identification using RLS 
Consider the following fundamental signal 
representation: 
 

( ) ( )1111 cos θω += tAts  (8)
 
where 1A , 1ω  and 1θ  are the magnitude, angular 
frequency and phase, respectively. 
     Let ( ) ( )1111 cos θω += tAtx  and 

( ) ( ) ( )111112 cos θωω +−== tAtxtx & . Hence, 
( ) ( ) ( )txtAtx 1

2
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to the continuous state-space model: 
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     A discrete state-space model on the form 
 

kk Hxx =+1  (11)
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can be found applying the relationship [14] 
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     The model (11)-(12) leads to the following ARX 
representation 
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that will be useful in the fundamental frequency 
identification described in next section. In equation 
(15) 1+kς  represents measurement noise. 
 
3   Fundamental Frequency 
Identification 
Two methods for fundamental frequency 
identification are presented here. The first one relies 
on a RLS algorithm [15] while the second one is an 
AFPLL (amplitude-frequency-phase-locked loop) 
[13]. Here the AFPLL is used for the identification of 
the fundamental frequency. 
 
3.1 RLS Method 
In order to apply the RLS algorithm, the equation 
(15) is represented in the following form: 
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     The RLS algorithm is summarized below. 
     Initial conditions: ( )0φ , ( )0θ̂  and 

( ) cIPRLS =−1 , with +ℜ∈c . 
     At the time 1+k : 
     1) Measure 

11 +k
y  

     2) Evaluate the predicted output 
11 +k

y , that is, 
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     3) Evaluate the gain 
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     4) Update the parametric estimate 
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     5) Update the covariance matrix 
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     6) Increment k  and return to step 1. 
     The fundamental angular frequency 1ω  is 
obtained at each sample interval 1+k  through 
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3.2 AFPLL Method 
Let A , δ  and ω  be the amplitude, phase angle and 
angular frequency of the desired component. Then 
the following set of equations is used: 
 

( ) ( ) ( )ttetA φµ sin1=&  (25)
( ) ( ) ( )ttet φµω cos2=&  (26)

( ) ( ) ( ) ( )tttet ωφµµφ += cos32
&  (27)



( ) ( ) ( )ttAty φsinˆ =  (28)
( ) ( )tytyte ˆ)( −=  (29)

 
where )(ty  is measure of the signal. The parameters 

1µ , 2µ  and 3µ  are positive numbers that determine 
the behavior of the algorithm in terms of convergence 
rate versus accuracy. 
 
Theorem 1: Let ( ) ( ) ( )tgtAtu ++= 000 sin δω  
where 0A , 0ω  and 0δ  are real constants, and ( )tg  is 
an arbitrary 0T -periodic bounded continuous function 
that has no frequency component at 0ω . For a proper 
choice of parameters { }3,2,1, =iiµ , the dynamical 
system (25)-(29) has a unique periodic orbit ( )tϑ  in 
( )φω,,A  space in a neighborhood of 

( ) ( )0000 sin δωµ += tAt . This neighborhood is 
determined by the function ( )tg  and the parameters 

1µ  to 3µ . Moreover, this periodic orbit is 
asymptotically stable. The orbit coincides with ( )t0µ  
when ( )tg  is zero. 
 
Proof: See [16]. 
 
4   Kalman Filter Algorithm 
Consider dynamic system represented by the 
following stochastic model: 
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where kγ  and kς  are uncorrelated Gaussian white 
noise sequences with means and covariances as 
follows: 
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where {}⋅E  denotes expectation and ijδ  denotes the 
Kronecker delta function. 
     The filtering equations are [17]: 
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with given initial conditions 0x̂  and 1|0 −P . 
     We also have 
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5   Simulation Results 
In order to test the reference generation schemes 
proposed. It was considered a 60 Hz three-phase 
system (380 V phase to phase) and a 6 pulse three-
phase rectifier with a 500 Ω load. The results 
presented are related to phase A. The sample 
frequency is 21 kHz and it is considered noise 
measurements N~(0, 0.005). In Fig. 1 it is presented 
the measured current of phase A.  
 

 
Fig. 1 – Measurement of the current of phase A 

 
     The harmonics model considered the odd 
harmonics from the 1st up to the 31st except the 3rd 
and its multiples. The Kalman filter variance matrices 
are: 2205.0 IQ =  and 10=R . The initial conditions 
of the Kalman filter are: 221|01|0 10,0ˆ IPx == −− . 
     The RLS algorithm was initialized with the 
following parameters: 00 =φ , 21.0

1
IPRLS =

−
 and 

[ ]T1151.00000002-881.99970914ˆ
0 =θ . After the 

transitory, at st 05.0= , the covariance matrix RLSP  



is reseted always that ( ) 5<RLSPtrace . This 
procedure is to avoid large transient on the start-up of 
the RLS and to improve the convergence after 

st 05.0= . In the AFPLL method 1001 =µ , 
20002 =µ  and 05.03 =µ . The initial conditions 

were 00 =A , 00 =φ  and 5720 ⋅⋅= πω . 
     Fig. 2 shows the convergence of the identified 
fundamental frequency with RLS. After a transient, 
the identified value converges to the desired value. 
Fig. 3 presents the reference signal to compensate the 
harmonics. This reference leads to Fig. 4 where it is 
depicted the compensated line current. High order 
harmonics are not compensated because they are not 
described in the Kalman filter model and in practice, 
due limitations on the compensation capacity of the 
active filters, they can be compensated by means of 
passive filters. 
 

 
Fig. 2 – Identification of frequency with RLS 

 

 
Fig. 3 – References obtained with Kalman filtering 

and RLS 
 
     In Fig. 5 it is depicted the convergence of the 
identified fundamental frequency with AFPLL. The 
transient is lower compared to the RLS. Fig. 6 
presents the reference signal to compensate the 
harmonics. This reference leads to Fig. 7 where it is 
depicted the compensated line current. The results are 
similar to the Kalman filter with RLS except for the 

initial transient that is a little bit higher in the Kalman 
filter with RLS. 
 

 
Fig. 4 – Compensated currents with Kalman 

filtering and RLS 
 

 
Fig. 5 – Identification of frequency with AFPLL 

 

 
Fig. 6 – References obtained with Kalman filtering 

and AFPLL 
 
6   Conclusion 
This paper presented two schemes for current 
reference generation for shunt active filters applied 
for harmonic cancellation under unknown 
fundamental frequency. Both schemes are based on 
the Kalman filter and a RLS and AFPLL are 
proposed to cope with the problem of unknown or 
variable fundamental frequency. The simulation 
results show the effectiveness of the method. Both 



strategies of frequency identification are of simple 
implementation. Since AFPLL deals with other 
quantities than frequency, it provides better results 
compared to the RLS. 
 

 
Fig. 7 – Compensated currents with Kalman 

filtering and AFPLL 
      
     In practice high order harmonics are not cancelled 
by the active filter because of cost or due limitations 
of the filter. If necessary, they can be treated by 
passive filters.  
     Since the Kalman filter deals with stochastic 
systems, the measurement noise influences are 
reduced in this strategy. Phase issues that arise in 
other methods, such as low pass filter or band pass 
filter, are also avoided. The scheme does not have 
problems concerning number of samples per period 
as those that appears when a FFT or DFT strategy is 
employed. 
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