
A Multi-Agent System based on Specific-Profile
for Efficient Distributed Computing

Youn-gyou Kook, Woon-yong Kim, Young-keun Choi
Dept. of Computing Science, Kwangwoon University

Wolgye-dong, Nowon-gu, Seoul, Korea

Abstract: - We propose the multi agent system based on profiling specifics for the distributed system, SPMaS. The
job scheduling and the path finding on the distributed computing are important factors for the reliable system and
running time reduction. The factors which affect the entire performance of scheduling and path finding are node's
capability(CPU, memory), network state(speed, traffic frequency) and usage patterns(average available resource,
connection lasting time, job request frequency, job execution frequency and error frequency). SPMaS analyses the
characters of node by using agent and composes node history. The node history helps system allocate the
best-suitable job for each node during job scheduling. In addition, managing groups based on the node history
makes effective handling for the load balance and defect of transmission.

Key-Words: - Multi Agent System, Mobile Agent, Specific Profile, Distributed Computing

1 Introduction

The numbers of web users are increasing
dramatically with advance of web technology. The
user requirements for consuming the variety
information are expanded in the both aspects, quality
and amount, so the great computing power is
necessary as the amount of computation grows.
However the server-oriented internet environment
lacks the utilization of the client resource [1]. To
utilize it, the distributed computing methods using
the mobile agent are researched at many fields. The
mobile agent as a technique for distributed computing
moves autonomously among nodes and does its job
by itself, so it reduces communication cost, and
supports asynchronous communication. These
advantages actualize we can use the resource of many
clients, same as the local resource.

In the distributed computing system using the
mobile agent, the agent's efficient transmission and
node management are very important factors to
consider [2]. In the job scheduling, the best suitable
job allocation can reduce the entire execution time.
Also, when agent is transmitted to the more than one
node, the entire execution time can be changed as the
transmission order [2][3]. The general distributed
systems(AMIS, MOS) use the serialization
transmission like master/slave, so the entire
execution time increases as the number of nodes
grows [4][5]. This problem can be resolved by the
parallel transmission like the binary tree. However
many factors like network capability, traffic and the

defect in the hardware and software affect the
distributed processing, so unexpected results are
produced [6][7]. The reason is that they do not
consider every node's real time statement(network
speed, traffic, defects, system status and usage
pattern).
 We propose SPMaS which allocates job optimally
and reduces entire execution duration with agent
transmission for the distributed computing in job
scheduling, node composition and node management.
The agent monitoring the specific characters of each
node in this system analyzes each node history. This
shows the effective and confident characteristics of a
node by presenting continuous status of node not
temporary status of node. This system processes job
scheduling based on node history in order to allocate
an optimized job on each node. In addition, it
composes and manages the group of nodes based on
node history, so the network problem during
transmission of agents and load balancing in node
management are resolved properly.

This paper is organized as follows. In chapter 2, we
review related works about distributed computing
system and its specification. In chapter 3, we present
an architecture of SPMaS and describe job
scheduling algorithm and resource management one,
and in chapter 4, we show the performance evaluation.
Finally we make a conclusion in chapter 5.

2 Related Works

Several public systems for distributed computing
appeared [Pea]. Most of these systems however are
either focused on some specific problems, or they
require dedicated hardware, or are proprietary,
offering little flexibility to developers. Entropia [8] is
a commercial version of distributed computing over
the Internet. They offer a robust technique and
assistance with expertise in a seamless integration
into existing network environments and in a
deployment of custom applications. Condor [9] is a
high throughput computing environment and can
manage very large collections of distributive owned
workstations.

The environment is based on a layered architecture
that enables it to provide a powerful and flexible suite
of resource management services to sequential and
parallel applications. A Beowulf cluster [10] is built
out of commodity hardware components, running a
free-software operating system like Linux or
FreeBSD, interconnected by a private high-speed
network. It is a dedicated cluster for running
high-performance computing tasks. The nodes in the
cluster don’t sit on people’s the desks, they are
dedicated to running cluster jobs.

Fig. 2 Architecture of SPMaS

Fig. 1 Network diagram of SPMaS

3 SPMaS System

 The network of SPMaS we proposed consists of
multiple service groups. Each service group is
classified by specific profile and node history,
process distributed transaction. Figure 1 shows the
network diagram of SPMaS we proposed.

Communication
Layer

Service
Presentation
Module Service Agent

Generator

Service
Wizard

Service
Repository

Service
Analyzer

Service
Validator

Service
Management Module

Group Task
Scheduler

Service
Pool

Service
Management
Agent

Resource
Monitoring
Agent

Agent Manager

Group
Monitoring
Agent

Agent Context

Agent Queue

Task Agent

Task Manager

Resource
Information
Manager

Specific
Profiler Agent

Specific
Profile

Node
HistoryNode
HistoryNode
HistoryNode
History

Group Manager

Node
Management
Policy

Group
Management
Policy

Node
Management
Module

Network
Monitoring
Module

Security
Module

Migration
Module

Service
Context
Layer

Agent
Layer

Resource
Management
Layer

Service
Context Layer
Service
Context Layer

Agent LayerAgent Layer

Resource
Management Layer
Resource

Management Layer

Communication LayerCommunication Layer

① Request services

② Transmit a service agent /
Request scheduling

③ Request to gather system specific-profile

④ Request job transmission to each group

[Group A]

[Group N]

⑤ Response of specific-profile

N
E
T
W
O
R
k

⑥ Service transmit

Fig. 3 Process of resource management and
service request

3.1 SPMaS Architecture

SPMaS's architecture is shown at Figure 2. The
service context layer creates the requested service
from the user dynamically, and the agent layer
provides the environment of execution for the service
and group scheduling. The resource management
layer manages each group, node's dynamic situation,
and lastly the communication layer is in charge of
supporting communication among groups and
transmitting agents. When the participated node
requests service, the user creates the desired service
dynamically through the service context layer.

The requested service becomes mobile agent's
code, and group task scheduler schedules every
agent's transmission to the each service group. The
best suitable amount of job is allocated based on each
service group's history which is managed by the
resource management layer. In the step of job
transmission, Group task scheduler transmits jobs to
each service group, not the entire nodes. The group
re-divides jobs to the subordinate nodes based on the
node history. It will reduce network traffic and load
which can be a great problem if jobs are transmitted
to the entire nodes. Figure 3 describes the process of
resource management and service request.
 The new node transmits specific profile to the
basic service group after setting basic specifications.

The new node is allocated to the proper service group
based on the location, interests and system
information expressed in the specific profile. The
node allocated to the any node is added to the proper
group's priority list based on the specific profile, and
the group management policy which has the modified
list is transmitted to the basic service group and it is
synchronized.
 The priority list of node is the alternative node list
which will replace group managing node if it is in
trouble. The list which is maintained independently
on each group is managed by group monitoring agent,
and is modified by checking each node's dynamic
states periodically.

3.2 Service Context Layer

 The user can create and search services
dynamically through the service context layer. If the
first node cannot find the required service at the
service repository through the service presentation
module, the service will be created. The service is
created by the service wizard, and created service is
transformed to the designated type by service
analyzer, and the Service-Validator validates it. If the
service is created properly, the service agent
generator creates mobile agent code which can be
executed on all the nodes.

3.3 Agent Layer

 The Agent Layer has the agent manager for
managing agent, service pool for storing created
services, group task scheduler for dynamic
scheduling, and agent context for executing services.
The agent manager has the job agent for distributed
processing, and network monitoring agent for
managing node's network state, service management
agent for managing service and group monitoring
agent for managing each service group. The group
task scheduler allocates the best suitable jobs through
referring the service group's specific profile, history
and group management policy.

3.4 Resource Management Layer

 The resource management layer manages the
service group and information for node management.
It has the group management policy for node
management, node management policy, specific
profile and node history for managing node's
performance factors.

The specific profile contains each node's resource
information, network status and group management
information. The communication layer creates and
manages the node management policy, and group
management policy contains performance of each
service group and contained node's brief information.
Node history is in charge of managing the changes of
node specifications. Node history classifies six
attributes as below.

Node_history = {SRF, SPF, AUR, NR, AST, EFR}

Definition 1. SRF (Service Request Frequency)
SRF is the number of times to request for processing
the service at the node.
Definition 2. SPF (Service Processing Frequency)
SPF is the number of times to process the service at
the node.
Definition 3. AUR (Average Usage Resource)
AUR is average value of the available resource that is
existed permanently at the node, so we can check the
possibility of service.
Definition 4. NR (Network Resource)
NR is the network resource that node is currently
using, so we can check the status of available network
resource when the service is requested.
Definition 5. AST (Average Service Time)
AST is the average connection duration at the

distributed system, and it is used for checking the
average time in one day.
Definition 6. EFR (Error Frequency Rate)
EFR is the frequency of software and hardware error
occurrence, and we can check the error rate at the
node.
 Definition 1 and 2 decide the priority of processing
service when the multiple services are requested. And
definition 3, 4 and 5 decide the amount of available
resource to allocate the job. Definition 6 decide
whether allocating the job or not. As SRF, SPF is
high frequency and AUR, NR and AST is high value,
we gives to node the amount of job allocation.

Node status is ON {
 Start timer for current session ;
 Create nodeServiceInfoTable, nodeResourceInfoTable ;
 While(Node status not OFF) {
 If(N_ACT instanceof SERVICE) {
 Service currentService = getServiceType() ;
 nodeServiceInfoTable.set

(beforeService, currentService);
 } else if(N_ACT instanceof RESOURCE) {
 Resource currentResource = getResourceType() ;

nodeResourceInfoTable.set
(beforeResource, currentResource) ;

 } else {
 increase

(ERROR_TYPE, ERROR_FREQUERENCY) ;
 }

 Stop timer ;
 readHistories() ;
 updateHistories() ;

}

Fig. 4 Profiling specific of nodes

Each node history stores the information about
node resource’s change and specific profile of nodes.
Figure 4 shows the algorithm for node’s profiling
specific 6 types of performance factors. Figure 5
shows the way to determine each node’s weight
based on the node histories.

3.5 Communication Layer

 Communication Layer is in charges of network
communication with other nodes. Communication
Layer has Node Management Agent(NMA) to face
the unpredictable network effect on the node
management. NMA extracts user’s characteristics
from the node histories, and makes the priority list
and group node election list based on it. Therefore, it
reduces fault occurrence more than the existed
uniformed selection method.

Fig. 5 Determining each node’s weight based on the
node history

In addition, it considers the entire nodes when it

selects subsidiary node, so it can deal with the trouble
properly when the both group and subsidiary nodes
are defected. The next algorithm shows the way to
decide group and subsidiary nodes.

4 Performance Evaluation

 SPMaS is developed in JDK 1.4.5, JNI and Visual
C++ 6.0. Figure 6 shows the initial dialog, it shows
the basic user information which is current status,
type, operating system, VM(virtual machine),
location, CPU and memory information.

Fig. 6 SPMaS’s basic user information

Fig. 7 SPMaS’s resource manager

Figure 7 shows system’s basic resource which is
managed by Resource Manager. Resource Manger
monitors usage, fluctuation rate of CPU and memory.
Figure 8 is the screen of loading agent file and data
file to schedule the requested service. The node
which performs scheduling allocates jobs based on
the basic service’s information, node’s specification
profile and history.

Fig. 8 Result of service request and scheduling

Figure 9 shows the screen of result collecting after
requested service is finished. During collecting the
result, the execution process, result and error are
shown on the real time base. To measure SPMaS’s
performance, we test it on the environment shown
follow as:

C_Weight = Weight of Node
Histories[] : Array of history
H_Threshold[] = Threshold of Histories
C_Rate = Change Rate of History
Nodes :
 Loop number of Node :
 Loop number of Histories :
 History cHistory = readHistoryFile(Histories[i]) ;

C_Weight = cHistory.readC_Weight() ;
Threshold = readThreshold(H_Threshold[i]) ;
Loop number of History :

 C_Rate = cal(before(histories[i]), after(histories[i]));
 If(C_Rate > Threshold) {
 C_Weight = C_Weight – C_Rate*Threshold;
 } else {
 C_Weight = C_Weight + C_Rate*Threshold;
 }

Loop END :
Write(C_Weight);

 Loop END :
 Loop END :
END :

Fig. 9 Result of processing distributed transactions

 1) Execution environment

 - Windows 2000 / XP : 15 PCs
 - Linux RedHat 9.0 : 5 PCs
2) Test Data
 - The analyze of log data
 (approximately 100MB)
 - Mersenne prime number computation
3) Number of systems to test
 - 1 PC, 2PCs, 4PCs, 10 PCs, 20PCs

In this test data, we test two types, because we need

to analysis the job with heavy network load and light
one. Each test was run with 2,4,10,20 PCs based on
the first single PC execution. The entire result of
analysis is shown at Figure 10.

Fig. 10 Entire processing time of distributed
transactions
 In Figure 10, ①, ② are the log analysis which
carries data, and ③, ④ are the measurement of prime
number. In the log analysis, ② shows the comparison
of the test with consideration of system’s
specification and ① shows to be test without
consideration. In the result of ①, ②, the execution
time of two systems is even worse than the single
system, because computing is executed based on the
network transmission. It means network capability is
very important factor if we use the large data, so the

network capability has to be concerned. Additionally,
we test our system with designated conditions for the
variety validation.

Firstly, we classify the status of node’s resource
as 3 types.

1) Availability 1%~30% : resource is low in
the node

2) Availability 31%~60% : resource is middle
in the node

3) Availability 61%~100% : resource is high
in the node

When we execute the job with over 30% of

availability, the performance is similar or little
lowered. However, lower than 30% of availability
means the distributing overhead was too big to ignore.
Figure 11 and 12 show the execution time as
availability of node resource. Figure 11 describes
over 30% of availability is stable, because
measurement of prime numbers does not require
much CPU possession rate. We predict that if the job
needs much more available resource, the result will
be changed.

Fig. 11 Execution time that only agent processing
distributed transactions without estabilishing thresold
to use node’s resource

Fig. 12 Execution time that agent processing
distributed transactions with data without
estabilishing thresold to use node’s resource

Figure 12 shows the execution time of log
analysis with resource availability condition. The log
analysis requires more resource than the prime
number, so the execution time was increased.

Fig. 13 Execution time that only agent processing distributed
transactions on estabilishing thresold to use node’s resource

Fig. 14 Execution time that only agent processing
distributed transactions with data on estabilishing
thresold to use node’s resource
 In figure 13 and 14, we established the threshold to
use node’s resource. As established threshold, we
cannot use the nodes which have less than 30% of
resource availability. In Figure 13, we add the result
with 30% threshold and 30% of resource availability.
Because of threshold, when the execution time of
nodes in less than 30% of availability is increased. In
this case, we computed our job with 20 PCs, but the
execution time was 18 minutes, so the advance of
distributed computing disappeared. Therefore, we
need at least 30% of resource availability for
distributed computing. Figure 14 shows the lowed
performance like Figure 13 when the availability of
node is less than 30%. Specially, the prime number
computation is more lowered than log analysis,
because it needs more resource Figure 14 shows that
the result of computing with 20 PCs is similar with
the single computation. Based on these results, we
should select the nodes which have more than the
minimum available resource for the distributed
computing.

5 Conclusion

The distributed computing area is focused as the
computing power of clients connected WWW(World
Wide Web) is increased rapidly. However, the
general distributed computing system does not
consider each client’s dynamic state and performance

during job scheduling. This leads the increment of
execution time, so the entire performance is lowered.
Therefore, this paper considers each client’s dynamic
state and performance, so the entire execution time is
reduced. This system supports each client can create
desired service dynamically, and applies the client’s
status and specification which are learned by the
monitoring agent and specification learning agent, so
it can reduce the entire execution time.

As the future works, we need to improve the
security module for the assurance of safety in the
distributed system and the service creation module
for more accuracy and reliable service creation.

Reference

1. H. M. Deitel, P. J. Deitel, J. P. Gadzid, K. Lomeli, S.
E. Santry, S. Zhang, Java Web Services for
Experienced Programmers, Prentice Hall, 2003
2. Stefan Pleisch & Andre Schiper, Fault-Tolerant
Mobile Agent Execution, IEEE Transactions on
Computers, Vol.52, No.2, pp209-232, 2003
3. W. Theilmann and K. Rothermel, Optimizing the
Dissemination of Mobile Agents for Distributed Information
Filtering, IEEE Concurrency, pp.53-61, 2000
4. Hong-Jin Park & Jae-Hyun Lee, AMIS:Agent
Migration Information System, Proc of IEEE
TENCON ’02, 2002
5. M. Dikaiakos and G. Samsras, A Performance
Analysis Framework for Mobile Agent Sysems, Proc.
First Ann. Workshop Infrastructure for Scalable
Multi-Agent Systems, Proc. Fourth Int’l Conf.
Autonomous Agents 2000, June 2000
6. K. Takashio, G. Seoda, and H. Tokuda, A Mobile
Agent Framework for the Follow-Me Applications in
Ubiquitous Computing Environment, Proc. Int’l
Workshop Smart Appliances and Wearable
Computing(IWSAWC ’01), pp.202-207, 2001
7. Misikangas. P, Raatikainen. K, Agent migration
between incompatible agent platforms, Distributed
Computing Systems, 2000
8. Entropia, http://setiathome.ssl.berkeley.edu
9. Michael Litzkow, Miron Livny, and Matt Mutka,
Condor – a hunter of idle workstations. In Proc. of the
8th International Conference of Distributed
Computing Systems, pp104-111,1988
10. Donald J. Becker, Thomas Sterling, Daniel Savarese,
John E. Dorband, Udaya A. Ranawak, Charles V.Packer,
Beowulf: A parallel workstation for scientific computation.
In Proc. of the 1995 International Conference on Parallel
Processing(ICPP), pp11-14, 1995

