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Abstract: - This article presents a new learning methodology based on a hybrid algorithm for interval type-2 
TSK fuzzy logic systems (FLS). Using input-output data pairs during the forward pass of the training process, 
the interval type-2 TSK FLS output is calculated and the consequent parameters are estimated by recursive 
least-squares (RLS) method. In the backward pass, the error propagates backward, and the antecedent 
parameters are estimated by back-propagation (BP) method. The proposed hybrid methodology was used to 
construct an interval type-2 TSK fuzzy model capable of approximating the behaviour of the steel strip 
temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the transfer bar 
surface temperature at the finishing Scale Breaker (SB) entry zone. Comparative results show the advantage of 
the hybrid learning method RLS-BP over BP. 
 
Key-Words: - Interval type-2 TKS fuzzy inference systems; Interval type-2 TSK neuro-fuzzy systems; 
Hybrid learning; Uncertain rule-based TKS fuzzy logic systems; Temperature modelling and 
prediction. 
 
1 Introduction 

When a membership value cannot be 
accommodated in a set as 0 or 1, fuzzy sets of type-
1 are used. Similarly, when the membership grade 
cannot be determined even as a crisp number in [0, 
1], fuzzy sets of type-2 are used. Interval type-2 
fuzzy logic systems (FLS) constitute an emerging 
technology. In [1] one-pass and back-propagation 
(BP) methods are presented as interval type-2 
Mamdani FLS learning methods but only BP 
method for interval type-2 Takagi-Sugeno-Kang 
(TSK) FLS. When BP method is used, none of 
antecedent and consequent parameters of the type-2 
FLS are fixed at the starting of the training process; 
they are tuned using exclusively steepest descent 
method. Recursive least-squares (RLS) is not 
presented as a type-2 FLS learning method. In [1], 
there are explained three basic reasons that prevent 
the use of RLS on both Mamdani and TSK type-2 
FLS systems. 

The hybrid algorithm for interval type-2 
Mamdani FLS has been already presented [3, 4] 
with two combinations of learning methods: RLS-
BP and REFIL-BP. 

The aim of this work is to present and discuss a 
hybrid learning algorithm for interval type-2 TSK 
FLS’ antecedent and consequent parameters 
estimation during training process using input-
output data pairs. Interval type-2 TSK FLS output is 
calculated during forward pass and consequent’ 
parameters are estimated using RLS [2]. During the 
backward pass, the error propagates backward and 
the antecedent parameters are estimated using the 
BP method. The proposed algorithm is evaluated 
using an interval type-2 TSK FLS inference system, 
which predicts the transfer bar surface temperature 
at Hot Strip Mill (HSM) Finishing Scale Breaker 
(SB) entry zone. 
 
 
2 Problem Formulation 
Most of the industrial processes are highly 
uncertain, non-linear, time varying and non-
stationary [3, 5], having very complex mathematical 
representations. Interval Type-2 TSK FLS take 
easily the random and systematic components of 
type A or B standard uncertainty [6] of industrial 
measurements. The non-linearities are handled by 



FLS as identifiers and universal approximators of 
nonlinear dynamic systems [7, 8]. Stationary and 
non-stationary additive noise is modelled as a 
Gaussian function centred at the measurement 
value. In stationary additive noise the standard 
deviation takes a single value, whereas in non-
stationary additive noise the standard deviation 
varies over an interval of values [1]. Such 
characteristics make interval type-2 TSK FLS a very 
powerful inference system to model and control 
industrial processes. Considering the 
appropriateness of the hybrid learning method in 
ANFIS type-1 systems [9, 10] and in type-2 
Mamdani FLS [3, 4], it is convenient to consider an 
equivalent hybrid learning algorithm for interval 
type-2 TSK FLS. 

In [1] only back-propagation (BP) algorithm is 
presented as interval type-2 TSK FLS learning 
method. To the best knowledge of the authors, the 
hybrid learning method has not been reported in 
type-2 TSK FLS.  

Only the BP learning method for interval type-2 
TSK FLS has been proposed in the literature and it 
is used as a benchmark algorithm for parameter 
estimation or systems identification on interval type-
2 TSK FLS [1]. One of the main contributions of 
this work is to implement a new hybrid learning 
algorithm for interval type-2 TSK FLS using RLS 
[2] together with BP algorithm.  

According to Mendel [1], there are three basic 
points that prevent the use of RLS for consequent 
parameter estimation in interval type-2 TSK FLS: 

1. The starting point for the least-squares method 
to design an interval FLS is a type-1 Fuzzy Basis 
Function (FBF) expansion. No such FBF expansion 
exists for an interval type-2 TSK FLS. Since an 
interval type-2 TSK FLS output ( )xy  can be 
expressed as:  

( ) ( ) ( )[ ]xpyxpyx r
T
rl

T
ly +=

2
1

 (1) 

with Mi ,...2,1=  ordered rules, it looks like a 
least-squares method can be used to tune the 
parameters in T

ly  (matrix transpose of M  left-

points i
ly  of consequent centroids) and T

ry  (matrix 

transpose of M  right-points i
ry  of consequent 

centroids). Unfortunately, this is incorrect. The 
problem is that, in order to know the FBF expansion 

( )xp l  and ( )xp r , each i
ly  and i

ry  (the M  left-
points and right points of interval consequent 
centroids) must be known first. Because at initial 
conditions there are no numerical values for those 

elements, hence, the FBF ( )xp l  and ( )xp r  cannot 
be calculated. This situation does not occur for type-
1 FBF expansion.  

2. Although ly  and ry  can be expressed in 

terms of their lower ( if ) and upper ( if ) M firing 
sets as: 

( )M
ll

MLL
ll yyffffyy ,...,,,...,,,..., 111 +=  (2) 

( )M
rr

MRR
rr yyffffyy ,...,,,...,,,..., 111 +=  (3) 

the values of L and R are not known in advance. 
L is the index to the rule-ordered FBF expansions at 
which ly  is a minimum, and R is the index at which 

ry  is a maximum. Once the points L and R are 
known, (1) is very useful to organize and describe 
the calculations of ly  and ry . 

3.  The next problem deals with the re-ordering 
of i

ly  and i
ry . The type-1 FBF expansions have 

always had an inherent rule ordering associated with 
them; i.e., rules MRRR ,...,, 21  always established 
the first, second,…, and Mth  FBF. This order is 
lost and it is necessary to restore it for later use. 

 Although convergence of the proposed method 
has been tested in practice, a mathematical proof is 
still needed in general for hybrid learning 
algorithms. 

A second but very important purpose of this 
paper is to propose an application methodology 
based on interval type-2 TSK FLS and the hybrid 
learning method mentioned above to HSM 
temperature prediction. Interval type-2 TSK FLS is 
suitable for industrial modelling and control 
applications. Although temperature prediction is a 
critical issue in a HSM the problem has not been 
fully addressed by fuzzy logic control systems [1, 3, 
4]. 
 
 
3 Problem Solution 
3.1 Type-2 FLS 
A type-2 fuzzy set, denoted by A~ , is characterized 
by a type-2 membership function ( )uxA ,~µ , where 

Xx ∈  and [ ]1,0⊆∈ xJu  and ( ) 1,0 ~ ≤≤ uxAµ : 
( ) ( )( ) [ ]{ }1,0,|,,,~

~ ⊆∈∀∈∀= xA JuXxuxuxA µ   (4) 
This means that at a specific value of x , say x′ , 

there is no longer a single value as for the type-1 
membership function ( )u′ ; instead, the type-2 
membership function takes on a set of values named 
the primary membership of x′ , [ ]1,0⊆∈ xJu . It is 



possible to assign an amplitude distribution to all of 
these points. This amplitude is named a secondary 
grade of type-2 fuzzy set. When the values of 
secondary grade are the same and equal to 1, there is 
the case of an interval type-2 membership function 
[1, 11, 12, 13, 14]. 
 
3.2 Using RLS Learning Algorithm in 
Interval Type-2 TSK FLS  
In interval type-2 TSK FLS [1], the learning 
algorithm is BP during backward pass for 
antecedent and consequent parameters estimation as 
shown in Table 1.  

Table 1 
One Pass in Learning Procedure for Interval Type-2 

TSK FLS 
 Forward 

Pass 
Backward 

Pass 
Antecedent 
Parameters Fixed BP 

Consequent 
Parameters Fixed BP 

 
In the proposed hybrid algorithm, RLS is used 

during forward pass for consequent parameters 
tuning, and BP during backward pass for antecedent 
parameters tuning, as shown in Table 2.  

Table 2 
Two Passes in Hybrid Learning Procedure for  

Interval Type-2 TSK FLS 
 Forward 

Pass 
Backward 

Pass 
Antecedent 
Parameters Fixed BP 

Consequent 
Parameters RLS Fixed 

 
3.3 Adaptive RLS-BP Hybrid Learning 

Algorithm 
The hybrid training method is based on the initial 
conditions of consequent parameters: i

ly  and i
ry . It 

is presented as in [1]: Given N input-output training 
data pairs, the hybrid training algorithm for E 
training epochs, should minimize the error function:  

( ) ( )( ) ( )[ ]2
22

1 tt
s

t yfe −= x  (5) 

where ( )( )t
sf x2  is the defuzzified output. The 

following paragraph describes the RLS-BP hybrid 
algorithm: 

1. Initialize all parameters in the antecedent and 
consequent membership functions. 

2. Set the counter, ep  of the training epoch to 
zero; i.e., 0≡ep . 

3. Set the counter, t  of the training data to unity; 
i.e., 1≡t . 

4. Apply the input ( )tx  to the interval type-2 
TSK FLS and compute the total firing interval and 
consequent for each rule; i.e. compute if  and if . 

5. Compute ly  and ry using the iterative method 
described in [1]. Establish L and R, so ly  and ry can 
be expressed as: 

 ( )M
ll

MLL
ll yyffffyy ,...,,,...,,,..., 111 +=  

 ( )M
rr

MRR
rr yyffffyy ,...,,,...,,,..., 111 +=  

6. Compute the defuzzified output, ( )( )t
TSKf x2, . 

7. Determine the explicit dependence of ly  and 

ry  on membership functions. Because L and R 
obtained in step 5 usually change from one t-
iteration to the next, the dependence of ly  and ry  
on membership functions will change also from one 
t-iteration to the next. 

8. Test each component of ( )tx  to determine the 
active branches: the lower and upper values of 
membership functions of each rule. 

9. Tune the parameters of the active branches of 
the consequent using RLS algorithm [2]. 

10. Tune the parameters of the active branches of 
the antecedent’s membership functions using the BP 
algorithm. 

11. Set 1+≡ tt . If 1+≡ Nt , go to step 12; 
otherwise, go to step 4. 

12. Set 1+≡ epep . If Eep ≡ , STOP; otherwise 
go to step 3. 
 
 
4 Application to Transfer Bar Surface 
Temperature Prediction 
4.1 Hot Strip Mill (HSM) 
Because of the complexities and uncertainties 
involved in rolling operations, the development of 
mathematical theories has been largely restricted to 
two-dimensional models applicable to heat losing in 
flat rolling operations. Fig. 1 shows a simplified 
diagram of a HSM. 

Quality assurance in HSM processes lies mostly 
in the effective use of control and automation 
techniques. The most critical stage in the HSM 
process occurs in the Finishing Mill (FM). Actually, 
there are several mathematical model-based systems 
for setting up the FM. There is a model-based set-up 



system [15] that calculates the FM working 
references needed to obtain gauge, width and 
temperature at the FM exit stands. 

 
Fig. 1 Typical Hot Strip Mill (HSM) 

 
The errors in the gauge of the transfer bar are 

absorbed in the first two FM stands and therefore 
have a little effect on the target exit gauge. It is very 
important for the model to know the FM entry 
temperature accurately. A temperature error will 
propagate through the entire FM.  

The inputs of the interval type-2 TSK FLS model 
used to predict the SB entry temperature are the 
surface temperature of the transfer bar and the time 
required by the transfer bar head to reach the SB 
entry zone. Currently, the surface temperature is 
measured using a pyrometer located at the Roughing 
Mill (RM) exit side. This measurement is affected 
by noise produced by the transfer bar scale growth, 
environment water steam, pyrometer location, 
calibration, resolution and repeatability. The head 
end transfer bar travelling time is calculated by 
mathematical modelling using FM estimated thread 
speed. This estimation is associated with the 
inherent modelling uncertainty.  
 
4.2 Interval Type-2 TSK Fuzzy Logic 
System Design 
The architecture of the interval type-2 TSK FLS was 
established in such away that parameters are 
continuously optimized. The number of rule-
antecedents was fixed to two; one for the RM exit 
surface temperature and the other for transfer bar 
head travelling time. Each antecedent-input space 
was divided in three fuzzy sets, fixing the number of 
rules to nine. Gaussian primary membership 
functions of uncertain means were chosen for the 
antecedents. Each rule of the each interval type-2 
TSK FLS is characterized by six antecedent 
membership function parameters (two for left-hand 
and right-hand bounds of the mean and one for 
standard deviation, for each of the two antecedent 
Gaussian membership functions) and six consequent 
parameters (one for left-hand and one for right-hand 
end points of each of the three consequent type-1 

fuzzy sets), giving a total of twelve parameters per 
rule. 

The resulting interval type-2 TSK FLS uses type-
1 singleton fuzzification, join under maximum t-
conorm, meet under product t-norm and product 
implication. 
 
4.3 Noisy Input-Output Training Data Pairs 
Noisy input-output data pairs of three different coil 
types from actual production schedules of an 
industrial HSM were collected and used as training 
data. The inputs were the noisy surface temperature 
measured at the RM exit, and the travelling time 
measured from the RM exit to the SB entry transfer 
bar. The output was the noisy transfer bar surface 
temperature measured at the SB entry. 
 
4.4 Fuzzy Rule Base 
The interval type-2 TSK fuzzy rule base consists of 
a set of IF-THEN rules that represents the model of 
the system. The interval type-2 TSK FLS has two 
inputs 11 Xx ∈ , 22 Xx ∈  and one output Yy ∈ , 
which have a corresponding rule base size of M = 9 
rules of the form:  

THENFisxandFisxIFR iii ,~~: 2211  

22110 xCxCCY iiii ++=  (6) 
where iY  the output of the ith rule, is a fuzzy type-1 
set, and i

jC  with  9,...,3,2,1=i  and 2,1,0=j , are the 
consequent type-1 fuzzy sets.  
 
4.5 Input Membership Function 
The primary membership functions for each input of 
interval type-2 TSK FLS are singletons described by 
vertical lines at the input value '

kk xx = , the 
measured value of the input, where =k 1,2 (the 
number of singleton inputs). Not being able to 
compensate for uncertain measurements. 
 
4.6 Antecedent Membership Functions 
The primary membership functions for each 
antecedent are interval type-2 fuzzy sets described 
by Gaussian primary membership functions with 
uncertain means: 

( )


















 −
−=

2

2
1exp i

k

i
kk

k
i
k

mx
x

σ
µ  (7) 

where [ ]i
k

i
k

i
k mmm 21 ,∈  is the uncertain mean, with 

k =1,2 (the number of antecedents) and i  = 1,2,..9 
(the number of M  rules), and i

kσ  is the standard 
deviation.  



The means of the antecedent fuzzy sets are 
distributed over the entire input space. The intervals 
of uncertainty for the means of RM exit temperature 
antecedent’s fuzzy sets were selected as: 

[ ]
111111

8,8 nxxnxx mm σσσσ +−−−  
[ ]

1111
, xxxx mm σσ +−  

[ ]
111111

8,8 nxxnxx mm σσσσ ++−+   (8) 
 
and for the transfer bar head end travelling time 
antecedent’s fuzzy sets were selected as: 

[ ]
2222222

8,,8 nxxxnxx mmm σσσσ +−−−  
[ ]

111
, xxxx mm σσ +−  

[ ]
222222

8,8 nxxnxx mm σσσσ ++−+   (9) 
 
where 

1xm  and 
1xσ are the mean and standard 

deviation of input 1x , 
2xm and 

2xσ are the mean and 
standard deviation of input 2x , 

1nσ is the standard 
deviation of RM exit temperature noise, and 

2nσ is 
the standard deviation of travelling time noise.  

Table 3 shows the calculated three intervals 
values of uncertainty for input 1x . 

Table 3 
Intervals of Uncertainty of Input 1x  

 11m  
Co  

12m  
Co  

1σ  
Co  

1 950 952 60 
2 1016 1018 60 
3 1080 1082 60 

 
Fig. 2 shows the initial membership functions for 

the antecedent fuzzy sets of input 1x . 

 
( Co ) 

 
Fig. 2 Membership functions for the antecedent 

fuzzy sets of input 1x  

 
Table 4 shows the values of the three intervals of 

uncertainty for input 2x . 
Table 4 

Intervals of Uncertainty of Input 2x  
 21m

s 
22m  

s 
2σ  

s 
1 32 34 10 
2 42 44 10 
3 56 58 10 

 
Fig. 3 shows the initial membership functions for 

the antecedent fuzzy sets of input 2x . 

 
(s) 

 
Fig. 3 Membership functions for the antecedent 

fuzzy sets of input 2x  
 
In this application we have used three different 

material type coils with different target gage, target 
width and steel grade as shown in Table 5. 

Table 5 
Material Type Coils 

 Target 
gage 
mm 

Target 
width 
mm 

Steel grade 
SAE/AISI 

Coil A 1.95 1104.0 1006 
Coil B 5.33 1066.0 1009 
Coil C 3.04 939.0 1045 

 
The calculated mean and standard deviation of 

input 1x  and input 2x  of training data are shown in 
Table 6. 

The standard deviation of temperature noise 

1nσ was initially set to 1.0 Co  and the standard 

deviation of time noise 
2nσ was set to 1.0 s. 

 
 



Table 6 
Calculated Mean and Standard Deviation of 1x  and 

2x  inputs 
 

1xm  

Co  
1xσ  

Co  
2xm  

s 
2xσ  

s 
Coil A 1050.0 13.0 39.50 2.41 
Coil B 1037.2 22.98 39.67 2.52 
Coil C 1022.0 16.78 37.32 3.26 

 
The standard deviations of antecedent’s fuzzy 

sets were chosen for the M = 9 rules to be i
1σ = 

60.0 Co  and i
2σ = 10.0 s respectively. The means of 

the antecedent fuzzy sets were uniformly distributed 
over the entire input space. 
 
4.7 Consequent Membership Functions 
Each consequent is an interval type-1 fuzzy set 
with [ ]i

r
i
l

i yyY ,= : 
ii

j
p

j j
ip

j j
i
j

i
l ssxcxcy 0101

−−+= ∑∑ ==
 (10) 

and 
ip

j
i
jj

ip

j j
i
j

i
r ssxcxcy 0101

+++= ∑∑ ==
 (11) 

where i
jc denotes de centre (mean) and i

js  denotes 

de spread of the consequent centroid i
jC , with 

9,...,3,2,1=i  and 2,1,0=j . Then i
ly   and i

ry  are the 
consequent parameters. When only the N input-
output ( ) ( )( )11 : yx , ( ) ( )( )22 : yx ,…, ( ) ( )( )NN yx :  data 
training pairs are available and there is not data 
information about the consequents, the initial values 
for the centroid parameters i

jc  and i
js can be chosen 

arbitrarily in the output space [16, 17]. In this work 
the initial values of i

jc  were set equal to 0.001 and 

the initial values of i
js  equal to 0.0001, for 

9,...,3,2,1=i  and 2,1,0=j . 
 
 
5 Results 
An interval type-2 TSK FLS system named in this 
paper as Sugeno ANFIS Type-2, was trained and 
used to predict the SB entry temperature, applying 
the RM exit measured transfer bar surface 
temperature and RM exit to SB entry zone travelling 
time as inputs. For each of the two methods, BP and 
RLS-BP, we ran fifteen epoch computations; one-
hundred eight parameters of nine rules were tuned 
using eighty-seven, sixty-eight and twenty-eight 
input-output training data pairs per epoch, for coil 

type A, type B and type C respectively. The same   
interval type-2 FLS system was tested using two 
different learning methods under the same initial 
conditions, the same input-output training data pairs, 
and the same input-output checking data pairs.  

The performance evaluation for the learning 
methods was based on the Root Mean-Squared 
Error (RMSE) benchmarking criteria, as in [1]: 

( ) ( ) ( ) 2
1

1* 2,2, ∑ = 



 





−= n

k
kfkY

n
RMSE TSKTSK x   

 (12) 
where ( )kY  is the output data from the input-output 
checking pairs, ( )*2,TSKRMSE  stands 
for ( )BPRMSETSK 2, and for ( )BPRLSRMSE sTSK −2, , 
obtained when applied BP and RLS-BP learning 
methods to an interval type-2 TSK FLS. 

Fig. 4 shows RMSE of the two used interval 
type-2 TSK FLS systems with fifteen epochs’ 
computations of type C coil. It can be appreciated 
that the hybrid RLS-BP type-2 TSK has better 
performance than the BP type-2 TSK. The interval 
type-2 TSK FLS were very sensitive to learning 
parameters values.  

 
(Epoch) 

 
Fig. 4 IntervalType-2 TSK FLS   (*) RMSE TSK, 2 

(BP)   (o) RMSE TSK, 2  (RLS-BP) 
 
 
6 Conclusions 
We have presented a new application of interval 
type-2 TSK FLS using the proposed RLS-BP hybrid 
learning method. The interval type-2 TSK FLS 
antecedent membership functions and consequent 
centroids absorbed the uncertainty introduced by the 
antecedent and consequent values initially selected, 
temperature measurements, and inaccurate 
travelling time estimations. BP, and RLS-BP 
methods were tested and the modelling results 

R
M

SE
 



demonstrated the power of the hybrid parameters 
estimation. RLS-BP achieves better performance 
over BP method. 
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