CRYPTOGRAPHY METHODS USING THE 

RSA ALGORITHM

Cristian Lupu1, Bogdan Firtat2, Claudia Enoiu2
1 National Institute for Research and Development 

in Microtechnologies, Bucharest, ROMANIA
2 Center for New Electronic Architecture, Bucharest, Romania

ABSTRACT

The RSA Algorithm is widely used in electronic commerce protocols, and is believed to be secure given sufficiently long keys. Since its initial publication, the RSA system has been analyzed for vulnerability by many researchers. Although twenty years of research have led to a number of fascinating attacks, none of them is devastating, which makes it a very powerful tool for cryptography.
KEYWORDS: Cryptography, RSA Algorithm

1. INTRODUCTION
RSA is an algorithm for public key encryption. It was the first algorithm known to be suitable for signing as well as encryption, and one of the first great advances in public key encryption. It is still widely used in electronic commerce protocols, and is believed to be secure given sufficiently long keys.


The RSA algorithm is named after Ron Rivest, Adi Shamir and Len Adleman, who invented it in 1977. The basic technique was first discovered in 1973 by Clifford Cocks of CESG (part of the British GCHQ) but this was a secret until 1997. 

The RSA algorithm can be used for both public key encryption and digital signatures. Its security is based on the difficulty of factoring large integers.
The algorithm was patented by MIT in 1983 in the United States of America. The patent expired 21 September 2000. Since the algorithm had been published prior to patent application, patent filing regulations in much of the rest of the world precluded patents elsewhere. Had Cocks' work been publicly known, a patent in the US would not have been possible either.

Since its initial publication, the RSA system has been analyzed for vulnerability by many researchers. Although twenty years of research have led to a number of fascinating attacks, none of them is devastating. They mostly illustrate the dangers of improper use of RSA. Indeed, securely implementing RSA is a nontrivial task.

In conventional cryptosystems, such as the Data Encryption Standard (DES), a single key is used for both encryption and decryption. This means that a key must be initially transmitted via secure channels so that both parties have it before encrypted messages can be sent over insecure channels. This may be inconvenient. If you have a secure channel for exchanging keys, then why do you need cryptography in the first place? 

In public key cryptosystems, everyone has two related complementary keys, a publicly revealed key and a secret key. Each key unlocks the code that the other key makes. Knowing the public key does not help you deduce the corresponding secret key. The public key can be published and widely disseminated across a communications network. This protocol provides privacy without the need for the same kind of secure channels that a conventional cryptosystem requires. Anyone can use a recipient's public key to encrypt a message to that person, and that recipient uses her own corresponding secret key to decrypt that message. No one but the recipient can decrypt it, because no one else has access to that secret key. Not even the person who encrypted the message can decrypt it. 

Message authentication is also provided. The sender's own secret key can be used to encrypt a message, thereby ``signing'' it. This creates a digital signature of a message, which the recipient (or anyone else) can check by using the sender's public key to decrypt it. This proves that the sender was the true originator of the message, and that the message has not been subsequently altered by anyone else, because the sender alone possesses the secret key that made that signature. Forgery of a signed message is infeasible, and the sender cannot later disavow his signature. 

These two processes can be combined to provide both privacy and authentication by first signing a message with your own secret key, then encrypting the signed message with the recipient's public key. The recipient reverses these steps by first decrypting the message with her own secret key, then checking the enclosed signature with your public key. 


2. CRYPTOGRAPHIC HASH FUNCTIONS
Cryptographic hash functions are typically used to compute a message digest when making a digital signature. Instead of encrypting the whole message with the secret key, only the message digest is encrypted. This is much faster than encryption the complete message. 

A hash function compresses the bits of a message to a fixed-size hash value in a way that distributes the possible messages evenly among the possible hash values. A cryptographic hash function does this in a way that makes it extremely difficult to come up with a message that would hash to a particular hash value. 

Cryptographic hash functions typically produce hash values of 128 or more bits. This number is vastly larger than the number of different messages likely to ever be exchanged in the world. 

The message digest algorithm used in PGP is the MD5 Message Digest Algorithm, placed in the public domain by RSA Data Security, Inc. MD5's designer, Ronald Rivest, writes this about MD5: “It is conjectured that the difficulty of coming up with two messages having the same message digest is on the order of operations, and that the difficulty of coming up with any message having a given message digest is on the order of operations. The MD5 algorithm has been carefully scrutinized for weaknesses. It is, however, a relatively new algorithm and further security analysis is of course justified, as is the case with any new proposal of this sort.” 

The level of security provided by MD5 should be sufficient for implementing very high security hybrid digital signature schemes based on MD5 and public-key cryptosystems. 

3. BASIC PRINCIPLES OF OPERATION
Key length

The key length for a secure RSA transmission is typically 1024 bits. 512 bits is now no longer considered secure. For more security or if you are paranoid, use 2048 or even 4096 bits. With the faster computers available today, the time taken to encrypt and decrypt even with a 4096-bit modulus really isn't an issue anymore. In practice, it is still effectively impossible for you or I to crack a message encrypted with a 512-bit key. An organisation like the NSA who has the latest supercomputers can probably crack it by brute force in a reasonable time, if they choose to put their resources to work on it. The longer your information is needed to be kept secure, the longer the key you should use. Keep up to date with the latest recommendations in the security journals. 

No one is going to criticise you for using a key that is too long provided your software still performs adequately. However, in our opinion, the biggest danger in using a key that is too large is the false sense of security it provides to the implementers and users. "Oh, we have 4096-bit security in our system" may sound impressive in a marketing blurb, but the fact that your private key is not adequately protected or your random number generator is not random may mean that the total security is next to useless. 

If we are encrypting the plaintext with a conventional symmetrical algorithm like DES, our session key is going to be 64 bits long. Triple DES will need 192 bits, and AES will need up to 256 bits. That gives us lots of security. Unlike our simple examples above where we had to deal with a series of integers, to encrypt a 256-bit key with a 1024-bit RSA modulus means we only need a single representative message integer. In fact, you need to pad the 256 bits to ensure that we have a large enough integer before we encrypt it with RSA. 1024 bits is 128 bytes long, so we have quite a handful of data to deal with. 

The factoring problem


Factoring is the act of splitting an integer into a set of smaller integers (factors) which, when multiplied together, form the original integer. For example, the factors of 15 are 3 and 5; the factoring problem is to find 3 and 5 when given 15. Prime factorization requires splitting an integer into factors that are prime numbers; every integer has a unique prime factorization. Multiplying two prime integers together is easy, but as far as we know, factoring the product of two (or more) prime numbers is much more difficult. 

Factoring is the underlying, presumably hard problem upon which several public-key cryptosystems are based, including the RSA algorithm. Factoring an RSA would allow an attacker to figure out the private key; thus, anyone who can factor the modulus can decrypt messages and forge signatures. The security of the RSA algorithm depends on the factoring problem being difficult and the presence of no other types of attack. There has been some recent evidence that breaking the RSA cryptosystem is not equivalent to factoring. It has not been proven that factoring must be difficult, and there remains a possibility that a quick and easy factoring method might be discovered, though factoring researchers consider this possibility remote. 

It is not necessarily true that a large number is more difficult to factor than a smaller number. For example, the number 101000 is easy to factor, while the 155-digit number RSA-155 was factored after seven months of extensive computations. What is true in general is that a number with large prime factors is more difficult to factor than a number with small prime factors (still, the running time of some factoring algorithms depends on the size of the number only and not on the size of its prime factors). This is why the size of the modulus in the RSA algorithm determines how secure an actual use of the RSA cryptosystem is. Namely, an RSA modulus is the product of two large primes; with a larger modulus, the primes become larger and hence an attacker needs more time to factor it. Yet, remember that a number with large prime factors might possess certain properties making it easy to factor. For example, this is the case if the prime factors are very close to each other.
Timing attacks

Timing attacks exploit the timing variations in cryptographic operations. Because of performance optimizations, computations performed by a cryptographic algorithm often take different amounts of time depending on the input and the value of the secret parameter. If RSA private key operations can be timed reasonably accurately, in some cases statistical analysis can be applied to recover the secret key involved in the computations. 

Before discussing timing attacks on RSA, we must first consider the mathematics of the cryptosystem. RSA is a public key cryptosystem that uses a public exponent e for encryption and a private exponent d for decryption. It uses a modulus N which is a product of two large prime numbers p and q , i.e., N = pq. The exponents e and d must be chosen to satisfy the condition ed = 1 mod (p - 1)(q - 1). Then the RSA key pair consists of the public key (N, e) and the private key d. For example, if we select two prime numbers p = 11 and q = 3, then N = 11 * 3 = 33. Now compute (p - 1)(q - 1) = 10 * 2 = 20 and choose a value e relatively prime to 20, say 3. Then d has to be chosen such that ed = 1 mod 20. One possible value for d is 7 since 3 * 7 = 21 = 1 mod 20. So we get the public key (N= 33, e= 3) and the corresponding private key d = 7. We discard the original factors p, q. Factoring breaks RSA because if an attacker can factor N into p and q, she can use the public value e to easily find the private value d.

To encrypt a plaintext message M, we compute C = Me mod N, where C is the encoded message, or ciphertext. To decrypt the ciphertext C, we compute M = Cd mod N, which yields the original message M. Continue with our previous example where the public key (N= 33, e= 3) and the private key d = 7. Suppose we want to send a message M = 19. Encryption generates an encoded message C =Me mod N = 193 mod 33 = 28. The sender would send the encrypted message C = 28. To decrypt message C, the receiver uses the private key d and computes Cd mod N = 287 mod 33 = 19, which must be the original message M. The decryption works thanks to a result from number theory known as Euler’s Theorem [2]. Another use of RSA is to generate digital signatures which serve to verify the source of the message. Signing uses the private key d and is the same mathematical operation as decrypting. The receiver uses the public key e and performs an encryption operation to verify the signature.

The operation in RSA that involves the private key is thus the modular exponentiation M = Cd mod N, where N is the RSA modulus, C is the text to decrypt or sign, and d is the private key. The attacker’s goal is to find d. For a timing attack, the attacker needs to have the target system compute Cd mod N for several carefully selected values of C. By precisely measuring the amount of time required and analyzing the timing variations, the attacker can recover the private key d one bit at a time until the entire exponent is known. As Kocher [4] explained, the attack is in essence a signal detection problem. The “signal” consists of the timing variation caused by the target exponent bit, while the “noise” consists of the inaccuracies in the timing measurements and the random fluctuations in timing, particularly over a network. The number of timing samples required is thus determined by the properties of the signal and noise. In any case, the required sample size is proportional to the number of bits in the exponent d [4]. As there are only a limited number of bits in the private exponent d, the attack is computationally practical. Acknowledgment: The work of this paper was done with financial support from MATNANTECH 145(308)/ 2003 CRIPTOCEL project

3. CONCLUSIONS
RSA encryption is based on a simple mathematical principle of trying to find two prime factors of a very large number.
REFERENCES
[1] Kazuo Sakiyama, Sungha Kim, “An FPGA implementation and Performance Evaluation of Modular Multiplication Operation for RSA Cryptography algorithm”, 

[2] Ç. K. Koç, “RSA Hardware Implementation”, RSA Labs Technical Report TR-801 v1.0, August 1995.;

[3] Dan Boneh, “Twenty Years of Attacks on the RSA Cryptosystem”.




















































































