EXPLORING THE cellular automata phenomenology for cryptographic applications
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Abstract: - The aim of the research presented in this paper is the development of a high-performance cryptoscheme with Cellular Automata (CA). As the development of cellular automata applications is generally an experimental effort, the research implies the exploration through simulation of the huge space of cellular automata local rules and global states. The experimental criteria of selection for local rules are presented with some examples, for two types of cryptographic schemes. An experimental hardware platform with FPGAs was afterwards use for prototyping the algorithms proposed for encryption and decryption.
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1. Introduction. Criptography with Cellular Automata
The very large phenomenology of the cellular automata model and its apparently big complexity offer a good  basis for applications in cryptography (cellular automata are not the only dynamical systems applied in cryptography, and some of the basic principles of cryptography with cellular automata also stand for other dynamical systems). Massive parallelism is another feature of cellular automata that make this model attractive for cryptography, since lot of computation is often necessary in real-time applications. 
There are two main options for cellular automata cryptosystems. 
The first one implies that the message is encrypted with a specific algorithm, and afterwards decrypted using the same algorithm, run backwards. In this case the key is the algorithm itself because it is the only thing protecting the message. 
A second option uses an additional safety element, a key with which the plain message should be combined. Of course, when trying to break the encrypted message, the key and the algorithm should be two independent variables. 

Cellular automata (CA) can be easily be adapted to work with both principles in criptography. CA are very simple and robust devices that solve to a wide range of applications. Cellular automata can be created in 1D, 2D or even 3D. The principle is very simple. Every cell in the device has, at a particular moment in time, a certain state, it’s evolution in time depends on the present states of the neighboring cells. The rule used to determine the next state is very important and depends on the method used. 

If the  first method is applied with CA, the message is encrypted using just a particular algorithm. The plain message is transfered in the cellular automata as the initial state. The encrypted message is the furture state (after a number of steps) of the cellular automata. Here the evolution rules play have are of utmost importance for the performances of the cryptoscheme. If the choosen function is not reversible then the message could not be recovered. Finding reversible functions for cellular automata is a very difficult computation task. The lack of specific algorithms means that searching these functions is done by the analysis of their basins of attraction. Not an easy task! For instance, for 4 neighbors there are 65536 functions. 
If the message is encrypted using the second method of encryption mentioned above, the process is more flexible because the actual key is composed of three components: the initial state of the cellular automata, the evolution rule  and the function used to combine the message with the state of the cellular automata. Once again the importance of the evolution rule must be emphasized. In this case the CA are used to produce a very long pseudorandom stream of bits and the chosen rule has to provide this. Here there is no need for reversible functions, but an analysis is necessary in order to choose an appropriate function.
2. Phenomenology of CA, Analized with the DDLab Simulator, for Encryption Applications
So far, creating an algorithm to determine functions with specific evolution patterns for cellular automata, proved to be practicaly an impossible task. However, visualizing the basins of attraction of a function with DDLab became an important tool in the arsenal of the design engineers. A complete picture of all the states of particular CA and the way they are connected provides significant information of the behavior of a function. For instance, the field of the basins of attractions for a reversible function, used in the first method of encryption, will contain only independent cycles. Finding a function with this characteristic is not enough. Also, the expression of the inverse function has to be determined and not always this function can be implemented in cellular automata. Regarding the functions that can be used for the second method of encryption, the key element of the attraction basins is the existence of large circles. The importance of this feature has a very simple explanation.  Because the cellular automata have a finite number of states, in its evolution, a certain state will definetely appear twice at a certain moment. The distance (counted in number of states multiplied by the length of the cellular automata) between the first emergence of a state and the second one is basically the lenght of the pseudorandom stream with which the encryption is made. This distance is reflected in the dimensions of the loops from the attraction basins that are generated with DDLab.

2.1 Cellular Automata – definitions 

A CA evolve from an initial state called seed. The evolving states of the cells in a CA are determined by rules (functions). In the simplest case, each cell has two possible states 0 and 1.

The total number of rules that can be defined for a linear CA, with a dimension of neighborhood, k is equal to 
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 for example if k=5, there are 
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 rules that can be used. 

A CA with all the cells having linear rules is called a linear CA. If all the CA cells obey the same rule, then the CA is said to be a uniform CA; otherwise it is a hybrid CA. 

Also the CA is called to be Null Boundary, Periodic Boundary or Intermediate Boundary depending of the way that their extreme cells are connected. We will speak only about the Periodic Boundary (the extreme cells are adjacent to each other) and linear CA.

A linear CA can be defined by “n” and “k”, (n = the dimension of the CA, k = the number of neighborhood that a cell has). The CA will evolve after different functions (rules). From all the rules, a certain category has interesting proprieties: the reversible functions. For a better understanding of reversibility, let’s take the next observation: in the case in which in the local transition function nothing interferes except the prior state of the cells involved, if it goes through a general state which had already appeared before, then the CA will have a cyclic evolution. It will repeat over and over again the same succession of states. Such a cycle is called “attraction cycle”. It is possible for this cycle to consist of only one state, case in which the CA will remain permanently in the same state, named “attractor”, once it enters that final state.A “basin of attraction”, or attractor basin, represents all the states from which, the CA converges into an attraction cycle. Depending on the initial state, the CA can follow a certain trajectory inside the states space and can enter in different attractor basins.

2.2 Bassins of Attraction Revealing Reversible Functions

There are many types of basins of attraction, grouped in different classifications, mostly based on the CA evolution in time. The evolution to certain attractors, starting from randomly selected seeds, enables the appearance of self organizing phenomena, which implies the apparition, after long periods of time, of self organized structures. The nature of the attractor determines the shape and the dimensions of these self organized structures.   The most interesting, because of their features and the level of prediction that this type of basins can have, are the reversible attractor basins.Considering a CA defined by n=10 and k=3. In this example for instance, the CA has a total of 255 possible functions, but only some of them have reversible attraction basins (are reversible). After a simulation with DDLab it was revealed that only 8 functions are reversible. These functions are listed in the table below:

	Function decimal
	Function binary

	15
	00001111

	51
	00110011

	85
	01010101

	105
	01101001

	150
	10010110

	170
	10101010

	204
	11001100

	240
	11110000


An interesting feature appears when the dimension (n) of the CA is changed. Using DDLab for studying the attraction basins it can be seen that the new reversible functions are the same and no matter the dimensions of the CA, the reversible functions are not affected.

As a conclusion, the reversible functions depend only of the number of neighboring cells.

What has changed is the number of states comprised in an attractor basin, the number of the different types of attractor basin and this entire, with an overall increase of the total number of the attractor basins. 

The number of states varies exponentially with the dimension of the CA (the more cells are added to the CA, the bigger the number of states gets).

If the number of neighbors modifies, for example k=4, the complexity of the CA is increasing instantly. The number of possible function is 65536 and it can be observed that, the new reversible functions are not the same as the old ones
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Figure 1   The basins of attraction for a CA defined by: n=13, k=3 
2.3 Further Exploration of CA Space for Applications in Criptography

Some examples of attractor basin are shown in figures below. The CA in Figure 1 has 
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= 8192 states. The states, in the state space, are organized into 15 basins, with attractor periods ranging between 1 and 7. The number of states in each basin is: 68, 984, 784, 1300, 264, 76, 316, 120, 64, 120, 256, 2724, 604, 84 and 428. 
The main problem of this CA is that it has individually separated basins of attraction. This means that, not all the initial states can be reached starting only from one attractor cycle. 

Still there are some other possibilities for using this CA. Let’s assume that a message is transmitted and that the different states from the attractor cycles represent the key. The receiver has the same CA as the transmitter. 
The initial states can be then sent to the different receivers, where the intended key is obtained, in our case the different states from the attractor cycles.
Next image shows one of these basins of attraction. Figure 2.
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Figure 2   One basin of attraction (n=13, k=3)
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This particular basin links 604 states, of which 523 are garden-of-Eden states. The attractor period = 7, and one of the attractor states is shown in detail as a bit pattern. The direction of time is inwards, from garden-of-Eden states to the attractor, then clock-wise.This is an example of a non-reversible (irreversible), basin of attraction. The problem appears when a specific seed is to be reached. Starting from one of the 7 states of the attractor cycle, backwards, it is easily observed that the CA can reach any of the initials seeds. So this basin of attraction can not be used with a reversible function.

Figure 3 One basin of atraction
This CA that has only one basin of attraction with 15836 states and an attractor period of one, a point attractor, k = 4, hex rule = 7be6, n = 14. 

Apparently starting from the only state in the attractor cycle, any of the initial seeds can be reached. The problem is that for each initial seed, that we what to reach we have to determinate individual reversible functions, which is very hard and in some cases this functions might not even represent a CA.

The difference for transmitting a message with this CA is that, there is only one basin of attraction and that the attractor cycle is made from one state. As a conclusion, if this CA is used there is only one single key easy to discover.

3. Practical Implementation with FPGAs
A device built on the idea presented in the Introduction is very adaptable and can be added, basically, to any electronic circuit. Of course, encrypting an analog signal means that it has to be  first converted in a digital signal. One specific application is to encrypt a video signal of a TV station transmitted by satellite. Because it is based on a monthly subscription, the company does not permit to broadcast the programs via satellite, just by cable. Connecting different regions comes cheaper with a satellite thus the necessity of an encrypted broadcast signal.

Because the structure of this circuit is very simple and repetitive it is well suited for integration; the final VLSI version is a small area device. Testing this idea requires a FPGA platform. There are a significant number of advantages of testing with such an adaptable device and most of them are reflected in the budget of the project. 
The virtual results obtained in computer simulations can be tested in a real environment and improvements can be made on the design free of charge. Different cellular automata can be easily implemented on a FPGA, including many different evolution rules with no additional cost. Experiments will allow the designers to determine certain parameters of each encryption algorithm. 
Figure 4. Spartan 3 HW AFX SP 3400
From this point on, each method can be classified by different criteria such as speed or degree of safety offered. 
The classification reflects the performance of each method, of each function and it will be reflected in the price of the final product. 
These changes would not have been possible if the test platform had been an integrated circuit.  Testing the ideas on a FPGA gives the confidence that the final product will work correctly in any situations.

One such FPGA equipment is “Spartan 3 HW AFX SP 3400” (Figure 4) which is a very flexible evaluation platform. Spartan 3 FPGA’s are programmed by loading configuration data into robust static memory cells that collectively control all function elements and routing resources. 
Before powering on the FPGA, configuration data is stored externally in a PROM or some other nonvolatile medium either on or off the board. 

Some very important features are two digital-analog converters (DAC) 16bit 150Ksps (LTC 1865L) and two analog-digital converters (ADC) 14bit 8us conversion rate (LTC 1654). The ADC can be used in ratio metric applications or with external references. 
The high impedance analog inputs and the ability to operate with reduced spans down to 1V full scale allow direct connection to signal sources in many applications, eliminating the need for external gain stages. 
This FPGA platform is used for the selected configurations and algorithms in order to certify their properties in hardware version.
4. Conclusions 
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The paper presents the methodology for the development of particular cryptoschemes with Cellular Automata. 
This implies a huge simulation effort in order to choose a number of local rules, combined with appropriate initial states and topology, that can be effectively applied in cryptography. 
After this analysis of the phenomenology of CA, a second step is necessary in order to confirm the application: development of hardware platform that physicaly implements the algorithm. 
This one is realised with FPGAs Spartan platform that offer the flexibility and circuitry necessary for the physical devices.
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