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Abstract: - Image compression of hyperspectral sounder data is necessary because of the large storage 
requirements. The main objective of this paper is to present an efficient method for prediction coefficient 
estimation. The estimation is performed on a subset of the all image data points. The compression ratio remains 
almost the same with our method,  at the same time the compression time is reduced to the half of the original 
compression time. 
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1 Introduction 
The main objective of this paper is to present 

an efficient predictor for lossless compression of 
hyperspectral sounder data. Image compression is a 
very important problem in the image-processing field 
since very large images require a large amount of 
storage space. One example of very large images is 
those taken with hyperspectral sensors. Hyperspectral 
images can be defined as images with a high spectral 
resolution, typically 100 to 300 different wavelengths 
[7]. The hyperspectral sounder images used in this 
research are taken with a Hyperspectral 
Environmental Sensor (HES). 

 

The hyperspectral image has two spatial 
dimensions  and one spectral dimension. The residual 
data produced by the compression algorithm is the 
coded difference between the original data and the 
predicted value. The original data can be recovered 
from the coded residual values. Different types of 
lossless compression algorithms based on prediction 
are well documented in the literature [1]-[4].  

 
 

2 Theoretical background. 
 



 
2.1 Hyperspectral Image Data 

Different instruments are used for the 
acquisition of the data data at different wavelengths. 
An example of this type of instrument is a 
hyperspectral sensor. These sensors acquire data in a 
vast number of narrow and contiguous spectral bands, 
thus the use of the term hyperspectral. The 
hyperspectral sensors employed in this work are 
HES. 
 
In the 3D sounding data, captured by AIRS, each 
image has 2108 spectral bands, 135 scan lines 
containing 90 cross-track footprints per scan line 
temporal and spectral resolutions is over thousand 
infrared channels and with spectral widths of the order 
of 0.5 wave number [2]. 
 
 
2.2 Spectral and Spatial Information 

The goal of the lossless compression of the 
hyperspectral image is efficiency. Naturally all the 
information from the original image has to be 
maintained.  Linear predictors are used for lossless 
compression because of their efficiency. 

There exists two kinds of information in the 
hyperspectral images to make the prediction, spatial 
and spectral information. 
 

The lossless compression algorithms can be 
seen as consisting of two stages: a prediction stage in 
which pixel values are predicted and a coding stage in 
which difference between the original and predicted 
values is computed and encoded. One of the most 
efficient linear prediction methods for HES images is 
introduced in [3]. 
 

The main purpose of a linear prediction 
algorithm is to establish interpixel dependencies using 
linear mathematical functions [7]. Then, based on this 
dependency we use only few pixel to find values of all 

other pixels. Pixels from the current and any previous 
bands can be involved. It will be explained in depth in 
Section 3. 
 
Future random variables are predicted from past and 
present observable values in a prediction stage. 
Therefore, a prediction can be seen as a statistical 
estimation procedure. Linear prediction predicts the 
value for the next sample and computes the difference 
between predicted value and the original value [3]. 
Prediction of any current sample from some previous 
samples can be defined using linear or non-linear 
mathematical function. [7] 
 
 
2.3 Spe ctral linear prediction with DPCM 

This scheme, introduced in [3], uses a 
technique which implies prediction of each image 
band by involving number of bands along the image 
spectra. Each pixel is predicted using information 
provided by pixels in the previous bands in the same 
spatial position. An estimate for each pixel value is 
computed in the following way: 
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where, Px,y,z  is the value of the pixel at band z in 
spatial location (x,y), az,i, denote prediction 
coefficients (i =1….M), and M is the number of the 
image bands involved in prediction.  
 
For each band the linear prediction is computed in 
such a way that the prediction coefficients minimize 
the expected value of the squared residual: 
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for band z 
 



The entropy coding of the residual is performed band 
by band. Prediction coefficients are saved in a file that 
in entropy coded using an 8-bit entropy coder. The 
entropy coding part is performed with a range coder. 
The range coder used in our schemes is the 
Lundqvist’s range coder [6]. 
 

 
3  Improvement DPCM  in terms of time 
complexity 
 The idea is to reduce the time complexity of 
DCPM. Basically what we are doing in this 
improvement of DPCM is to reduce the number of 
the steps given for the loops when we are filling the 
matrices that are required to calculate the regression 
coefficients. It means that the two matrices, one 
vector of observations that contain all the pixels in the 
band, and one matrix of the levels of the independent 
variables, which perform the calculation of the 
regressions coefficients, are going to be smaller, more 
exactly smaller in number of rows. Normally for 
DPCM the number of rows in these matrices were the 
total number of pixels in the band, it was 
number_of_rows  = N*M, where N and M are the 
spatial dimensions of the image.  Now it can be 

reduced to: 
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where m >0 Ν∈ . So that every mth pixel of every 
row/column is selected. As you will see in the Section 
4, we have to select a right value of m in order not to 
reduce compression ratio, because with the reduction 
of size of both matrix, the coefficients got are not so 
accurate as with the normal matrix. So the ideal would 
be to select a right value of m in order to appreciate 
an improvement in the time complexity and not 
appreciate a decrease in the compress ratio. 
 

 
4 Experimental Results 

 

Algorithm described in Section 3 has been tested on 
HES airs_gran images. The images are available at 
[5]. For more information about these imges see 
Section 2.1. 
 
The tests have been performed in computers with the 
following resources: 
• AMD Athlon Thunderbird 1200 MHz,  
• 1024 MB ECC SDRAM, 
• Operating system: Debian GNU/Linux 3.0 
 
Attributes of the tables: 

Input Attributes: 
• m : the values indicates the factor by which 

the sampling for the coefficient estimation is 
reduced 

Output Attributes (Results): 
• CR: Compression Ratio 
• Time: time of execution [s] 

When the value of the attribute m = 1, the results 
correspond to the normal DPCM. 
 
From the results in the Table 1 it can be seen that as 
the m increases and the compression time decreases 
the compression ratio drops only slightly for small 
values of m (m=1..3). The same phenomenon can be 
observed from Figure 1 that shows the ratio between 
average compression ratios for different values of m 
and normal DPCM (m=1). Figure 2 illustrates the 
compression time in similar fashion. 
 
 

Table 1. Average results for the 10 HES images. 

m CR time [s] 
1 2.193 530 
2 2.189 259 
3 2.183 217 
4 2.177 212  
5 2.169 203 
 



 
Figure 1. Percentage of the compression ratio compared to 
the normal DPCM as a function of “m”. 

 
Figure 2. Percentage of the compression time compared to 
the normal DPCM as a function of “m”. 
 
 

 
5 Conclusions 
 
The spectral DPCM method is responsible for the best 
compression ratios known today for hyperspectral 
sounder images. The spectral prediction procedure is 
rather time consuming and for this reason we have 
modified our original spectral DPCM method. The 
compression ratio remains almost the same with our 
modified method, at the same time the compression 
time is reduced to the half of the original compression 
time. 
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