Software Testing Process Improvement to achieve a high ROI of 100:1

Ljubomir Lazić, SIEMENS d.o.o, Radoja Dakića 7, 11070 Beograd, Serbia&Montenegro, http://www.siemens.co.yu

Nikos Mastorakis, Military Institutions of University Education, Hellenic Naval Academy, Terma Hatzikyriakou, 18539, Piraeus, Greece
Abstract:- Software Quality Engineering (SQE) is a comprehensive life-cycle approach concerned with every aspect of the software product development process (SDP). An SQE program includes a comprehensive set of quality objectives, measurable quality attributes (quality metrics) to assess progress towards those objectives, and quantitative certification targets for all component software development processes. Approach, presented in this paper, is to focus on identification and elimination of defects as early in the life cycle as possible, thus reducing maintenance and test costs. Software testing parameters (e.g. software defect detection rates, defect containment, cost etc.) of concern may be estimated and updated, and the software testing strategy is accordingly adjusted on-line and the corresponding optimal actions are determined based on the estimates of these parameters. This paper suggests that the Integrated and Optimized Software Testing Process (IOSTP) can be achieved by applying computer-based Modeling, Simulation and Design of Experiment engineering discipline. In order to assure stable i.e. controllable and predictable STP we apply Six Sigma (6σ) for software methodology called DMAIC. In order to significantly improve software testing efficiency and effectiveness for the detection and removal of requirements and design defects in our framework of IOSTP, during 3 years of  our 6σ deployment to STP we calculated overall value returned on each dollar invested i.e. ROI of 100:1.  

Key-Words:- quality engineering, metrics, software testing, constant improvements, six sigma, simulation, design of experiments, ROI.

1. Introduction

Software Quality Engineering (SQE) is a comprehensive life-cycle approach concerned with every aspect of the software product development process (SDP). Schulmeyer [1], defines software quality assurance as “. . . the set of systematic activities providing the evidence of the ability of the software process to produce a software product that is fit for use.” Assurance that the product performs as specified is the role of product assurance. This includes “in process,” or embedded, product assurance, as well as some methods that involve independent oversight. Takes into account customer product requirements, customer quality requirements, and corporate quality requirements, SQE is integrated assurance approach to three attributes of SDP: Quality, Process and Management, leading to these SQE components: Quality Assurance (QA), Configuration Management (CM), Verification & Validation (V&V), Test & Evaluation (T&E). It consists of both process and product assurance. Its methods include assessment activities such as ISO 9000 and CBA IPI (CMM-Based Appraisal for Internal Process Improvement), analysis functions such as reliability prediction and defect causal analysis, and direct application of defect detection methods such as formal inspection and testing. The purpose of embedded SQA processes is product quality assurance. The activities are part of the development life cycle which will “build-in” the desired product quality. Once upon a time, in an earlier era of software engineering, it was possible that after a long period of designing and coding, a short, ad-hoc test would be organized to assess and validate a final product, just prior to its launch to the market. Today more and more people are involved professionally in the fascinating field of testing. New IT products flood the marketplace at an unexpectedly high and still increasing frequency, and as a consequence, no modern software engineering organization with any degree of self-esteem can continue to follow the mythical approach of ad-hoc and unprepared (unplanned), unsystematically, costly, uncontrolled&unpredictable i.e. unstable Software Testing Process (STP) [1-8]. Software testing must be realized and managed in systematic, planned, disciplined, controlled and incremental way according to many established software standards [9-11]. What’s more, the intelligence and complexity of new software products is booming. So creating a professional testing regime, which is fully embedded in the Software Product Development cycle i.e. Process (SPD) and synchronized with all related processes, has become a must. Software Testing is mandatory! Testing is a necessary prerequisite for successfully building and implementing Information Technology (IT) System. But often testing is regarded as a necessary evil: it is looked upon as a difficult and uncontrollable process, which takes too much time, money and will usually not result in an IT system that can be implemented without any problems. Unfortunately, in many cases this opinion is justified. Software projects are very risky. A survey of 8,000 large US software projects (Standish Group Chaos Report 2001) indicates an average cost overrun of 90%, schedule overrun of 120%, and 25% of large projects cancelled due to some combination of delays, budget overruns, or poor quality. Although testing accounts for between 25 and 70 of the total project budget, in only a few organizations does management spend the appropriate amount of time needed to manage STP, such a large sub-process in correct manner.

In order to assure controlled and stable (predictive) testing process in time, budget and software quality space we need to model, measure and analyze software-testing process by applying Six Sigma methodology across the IOSTP solution [2,4,8]. The name, Six Sigma, derives from a statistical measure of a process’s capability relative to customer specifications.  Six Sigma is a mantra that many of the most successful organizations in the world swear by and the trend is getting hotter by the day. Six Sigma insists on active management engagement and involvement, it insists on financial business case for every improvement, it insists on focusing on only the most important business problems, and it provides clearly defined methodology, tools, role definitions, and metrics to ensure success. So, what has this to do with software? The key idea to be examined in this article is the notion that estimated costs, schedule delays, software functionality or quality of software projects are often different than expected based on industry experience. Six Sigma tools and methods can reduce these risks dramatically i.e. Six Sigma (6σ) deployment in SDP/STP called DMAIC for “Define, Measure, Analyze, Improve, and Control”, because it organizes the intelligent control and improvement of existing software test process [6,8]. Experience with 6σ has demonstrated, in many different businesses and industry segments that the payoff can be quite substantial, but that it is also critically dependent on how it is deployed. In this paper we will concentrate on our successful approach to STP improvement by applying Six Sigma. The importance of an effective deployment strategy is no less in software than in manufacturing or transactional environments. The main contribution of this paper is mapping best practices in Software Engineering, Design of Experiments, Statistical Process Control, Risk Management, Modeling&Simulation, Robust Test and V&V etc. to deploy Six Sigma to the Software Testing Process (STP). Next section 2, describes the Role of the Six Sigma Strategy in Software Development/Testing Process is explained. In section 3, constant STP improvement by Design of Experiments, Statistical Process Control, Risk Management, Modeling&Simulation, Robust Test and V&V etc. to deploy Six Sigma, is presented. After that, in section 4, the ROI metrics and calculation are described. Finally in section 5, some data of successful ROI of 100:1 achievement of STP improvement is summarized.    

2. The role of the six sigma strategy in software development/testing process

The typical SDP/STP is a human intensive activity and as such, it s usually unproductive, error prone, and often inadequately done. Because software engineering processes and products include elements of human participants (e.g., designers, testers), information (e.g., design diagrams, test results), and tasks (e.g. “design an object-oriented system model”, or “execute regression test suite”), uncertainty occurs in most if not all of these elements. There are at list four domains of software engineering where uncertainty is evident: Uncertainty in requirements analysis, Uncertainty in the transition from system requirements to design and code, Uncertainty in software re-engineering and Uncertainty in software reuse [10]. As a consequence, software projects are very risky. The key idea to be examined in this article is the notion that estimated costs, schedule delays, software functionality or quality of software projects are often different than expected based on industry experience. It is nearly impossible to completely prevent or eliminate defects in such large complex systems. Instead, various QA alternatives and related techniques can be used in a concerted effort to effectively and efficiently assure their quality [1]. Testing is among the most commonly performed QA activities for software. It detects execution problems so that underlying causes can be identified and fixed. Inspection, on the other hand, directly detects and corrects software problems without resorting to execution. Other QA alternatives, such as formal verification, defect prevention, and fault tolerance, deal with defects in their own ways. Close examination of how different QA alternatives deal with defects can help one better use them for specific applications.

How Do We Develop a High-Yield (HY) Process? Possible answer could be Six Sigma Strategy to [6, 8]:

· Assure High Software quality

· Emphasize results of “successful” inspections and tests, namely defects and failures

· Assess cost-effectiveness quantitatively

· Identify best practices

· Continuously improve.

It can be done by effective and efficient i.e. HY SQA and management based on these best principles and practices:

· Key engineering principles (Pragmatic Iterative and Incremental Process, Client Orientation–Correctionality, High-Yield and Coverage-Driven Design Inspection, High-Yield Testing Process, Well-Integrated Team of highly qualified experts, Monitoring+Integrated Management etc.)

· Setting Management objectives (in Quality, Productivity and Resources)

· Integrate Measurement Process (define and measure Process and Product Metrics)

· Predict, Assess and Monitor Cost of Quality

· Apply Constant Process Improvement (CPI) based on Optimization techniques of: Product quality, Development cost, Time to market, and Development Resources (personnel and facility).

The formulation of sound software engineering policy and practices must be based on statistical analysis of data that is accurate and consistent. The one possible solution is Six Sigma strategy deployment that provides an effective and efficient approach to addressing all of the obstacles to improvement described above. Unlike any other approach to process improvement so far devised, Six Sigma insists on active management engagement and involvement, it insists on a financial business case for every improvement, it insists on focusing on only the most important business problems, and it provides clearly defined methodology, tools, role definitions, and metrics to ensure success. Six Sigma provides the mechanisms and training needed to get us ‘over the hump’ to begin to solve the software mess. It provides specific guidance and a structured process with clearly defined phases (Define, Measure, Analyze, Improve, Control – “DMAIC”) that insures success by invoking a quantitative discipline throughout. Opinion takes a back seat. DMAIC refers to a data-driven quality strategy for improving processes, and is an integral part of the company's Six Sigma Quality Initiative. DMAIC is an acronym for five interconnected phases: Define, Measure, Analyze, Improve, and Control. Each step in the cyclical DMAIC process is required to measure and ensure the best possible results [11, 12]. Many companies shorten this acronym to MAIC. The distinction is generally one of labels only, as MAIC companies do the define work under ‘Measure.’

The 6σ process steps are: 
Define the Customer, their Critical to Quality (CTQ) issues, and the Core Business Process involved. 

· Define who customers are, what their requirements are for products and services, and what their expectations are. 

· Define project boundaries ​ the stop and start of the process. 

· Define the process to be improved by mapping the process flow.

Measure the performance of the Core Business Process involved. 

· Develop a data collection plan for the process. 

· Collect data from many sources to determine types of defects and metrics. 

· Compare to customer survey results to determine shortfall.

Analyze the data collected and process map to determine root causes of defects and opportunities for improvement. 

· Identify gaps between current performance and goal performance. 

· Prioritize opportunities to improve. 

· Identify sources of variation.

Improve the target process by designing creative solutions to fix and prevent problems. 

· Create innovate solutions using technology and discipline. 

· Develop and deploy implementation plan. 

Control the improvements to keep the process on the new course. 

· Prevent reverting back to the "old way". 

· Require the development, documentation and implementation of an ongoing monitoring plan. 

· Institutionalize the improvements through the modification of systems and structures (staffing, training, incentives).

Each phase is designed to ensure (1) that companies apply the technique in a methodical and disciplined way; (2) that Six Sigma projects are correctly defined and executed; and (3) that the results of these projects are incorporated into running the day-to-day business.

3. Constant process improvement by six sigma to reach roi of 100:1

The Improve phase focuses on discovering, refining, and implementing solutions to the root causes of the problems identified in the Analyze phase. Every attempt should be made to maximize the benefits of proposed solutions. There is substantial evidence that a successful software process improvement (SPI) project will result in improvements in productivity, quality, schedule, and business value. There is also evidence that most SPI projects fail. This paper will present evidence gathered from published studies of successful projects that sheds light on the impact of SPI projects in terms of productivity, quality, cost and return. It will also discuss the risks associated with SPI projects and how they can be mitigated. We will argue that high returns are possible for SPI projects if known risks are mitigated.

First we will survey the literature on SPI projects. The projects described are generally wildly successful. The various studies have somewhat different ways of measuring cost, productivity, quality and financial benefit. But there is no mistaking the fact that most studies document very significant returns. The studies usually try to measure the cost, benefits, and return on investment (ROI) of SPI efforts [11,12,14]. The costs generally come from training, Software Engineering Process Groups (SEPG) to develop and maintain the process, ongoing quality reviews of project artifacts, and tools used to help manage, design, build, and document in an intelligent way. The literature also yields insights into where the value comes from. There are practices described below which, when they are institutionalized and made part of everyday operations, yield improvements in productivity and quality. The benefits are usually estimated using some variant of the following analysis. One source of benefit is reduced defects. First, defect measures are defined e.g. defects per thousand lines of code (for code) or defects per artifact (for artifacts like requirements documents). Second, the average cost of fixing a defect in each phase is estimated. This includes rework and re-testing. As process maturity improves over time and additional measurements are taken, defect rates go down. The benefit is calculated by multiplying the difference in defect rates by the cost of fixing a defect. A second source of financial benefit is increased productivity. Measures of output such as lines of code or function points per month go up with maturity level. Also, reuse becomes more predominant at higher maturity levels and contributes to productivity. Benefit is calculated by multiplying the improvement in production by the average labor rate. Costs of SPI generally include training, maintaining a Software Engineering Process Group (SEPG), cost of process assessments, and cost of inspections and reviews. ROI is calculated based on the benefits and costs over time. Return on investment or ROI is a widely used approach for measuring the value of a new and improved process or product technology. ROI is also used for measuring the economic value of popular approaches to software process improvement or SPI. However, ROI still remains a mystery to some practitioners, along with appropriate techniques for determining the ROI of SPI. This article explains the ROI of SPI, and introduces practical metrics and models for the ROI of SPI. Additionally, this article includes practical examples for estimating the ROI of Inspections, PSPsm, TSPsm, SW-CMM(, ISO 9001, and CMMI®. More importantly, this article helps sort through the seldom and often confusing literature by identifying a small set of practical metrics, models, and examples for the ROI of SPI. Reported returns of 400% to 800% on dollars invested in SPI are not uncommon. Of course, not all SPI programs succeed. Anecdotal evidence and analyses by organizations like the Gartner Group indicate a significant failure rate. Case studies of the failures are generally not written up in the SPI literature. We will present material from the analysts and personal experience describing the risks to SPI projects and what it takes to do them successfully. Lastly we will present some simple improvements that are practically guaranteed to yield significant improvements quickly as well as improvements that will provide added benefits over a longer period of time. The relationship between software process maturity, quality, and productivity has been studied extensively. In this section, we will review the results of several studies. Though the studies differ in the details, they show very substantial improvements in productivity and quality as well as very large returns on investment. Many of the studies are oriented around the Software Engineering Institute’s Capability Maturity Model (CMM). This model describes five levels of process maturity. Each level is associated with particular portions of the process that mark a logical progression up from the next lowest level. Many of the studies document the results of progression through the levels by applying corresponding software test technique, Design and QA Methods&Tools as mapped in Table 1. In one of the early classic studies of the impact of CMM, the Software Engineering Institute (SEI) studied 13 companies using CMM. The companies differed significantly in size, application domain, and approach to process improvement. To compensate for differences in scale, organization, and environment, results were measured within each organization over time. A summary of the study results is in the Table 2, below.

3.1 Benefits of Successful SPI Projects

The studies above and others document the benefits of successful SPI projects. Typical increases in productivity are on the order of 30% to 35% per year. Reported Return On Investment (ROI) figures are in the neighborhood of 500%. Annual reduction in post-release defect reports is typically around 40%. In most cases, the improvement continues year after year over the duration of the study even for organizations that has been practicing CMM for five or more years. To summarize, the benefits of SPI projects are:
· High return on investment

· Increased productivity

· Shorter schedules

· Fewer defects

· Cost savings

· More accurate estimates and schedules
Table 1. Six Sigma Methods & Tools vs. CMM Key Process Area Improvement Roadmap

	Six Sigma Methods

 & Tools

                     CMM Key Process 

                  Area Improvement Roadmap                           
	1. Project Management
	2. Voice of the Customer
	3. Requirements Management
	4. Thinking Statistically
	5. Modeling&Simulacion


	6. Design Planning: QFD


	7. Risk Management: FMEA


	8. Capability Analysis


	9. Inspections and Reviews


	10. Computational Intelligence  Tools


	11. Walkthrough and Audit


	12. Root Cause /Visual Tools


	13. Model Based Improvement


	14. Robust Test (DOE) 



	Level 2
	Requirements

Management


	
	●
	●
	●
	●
	●
	●
	●
	●
	
	●
	●
	●
	●

	
	Software Project

Planning
	●
	
	
	●
	
	●
	●
	
	
	
	
	●
	●
	

	
	Software Project

Tracking 
	
	
	
	
	
	●
	
	
	●
	
	
	
	
	●

	
	Subcontract

Management 
	●
	
	
	
	
	●
	
	●
	●
	
	●
	
	
	●

	
	Quality Assurance
	
	
	
	●
	
	●
	●
	●
	●
	●
	●
	
	
	●

	
	Configuration Mgmt.
	●
	●
	●
	
	
	
	
	
	●
	
	●
	
	●
	●

	Level 3


	Process Focus 
	
	●
	
	●
	
	●
	●
	●
	●
	
	
	●
	●
	●

	
	Process Definition 


	
	
	●
	
	●
	●
	
	●
	
	
	
	●
	●
	

	
	Training
	
	●
	
	
	
	
	
	
	●
	
	
	●
	●
	●

	
	Integrated SW

Management
	●
	
	●
	●
	
	
	●
	
	●
	●
	
	
	
	●

	
	Product Eng.

Coordination
	●
	
	
	●
	
	●
	●
	●
	
	●
	
	
	
	

	
	Intergroup Coordination
	●
	●
	
	
	
	
	
	●
	●
	●
	
	
	
	

	
	Peer Reviews 

	
	
	●
	
	●
	
	●
	
	
	
	
	
	
	

	Level 4
	Quantitative

Process

Management
	
	
	●
	●
	●
	●
	●
	●
	●
	●
	●
	●
	●
	●

	
	Quality Management
	
	●
	●
	●
	
	●
	●
	●
	●
	●
	●
	●
	●
	●

	Level 5
	Defect Prevention
	
	
	●
	●
	
	●
	●
	
	●
	
	●
	●
	●
	●

	
	Technical and

Process Change

Mgmt


	
	
	
	
	
	●
	
	
	
	
	
	●
	●
	●


Table 2. SPI programs success from SEI [13]

	Category
	Range
	Median

	Total yearly cost of SPI activities
	$49,000 -$1,202,000
	$245,000

	Years engaged in SPI
	1 - 9
	3.5

	Cost of SPI per software engineer
	$490 - $2004
	$1375

	Productivity gain per year
	9% - 67%
	35%

	Early detection gain per year (defects discovered pre-test)
	6% - 25%


	22%



	Yearly reduction in time to market
	15% - 23%
	19%

	Yearly reduction in post release defect reports
	10% - 94%
	39%

	Business value of investment in SPI (value returned on each dollar invested)
	4.0 - 8.8
	5.0


There is need to evaluate strengths and weakness of various software test methods concerning their effectiveness, efficiency, range, robustness and scalability, combine them to build optimized test scenario for particular SUT based on their strengths but avoid the problems associated with either approach. In order to significantly improve software testing efficiency and effectiveness for the detection and removal of requirements and design defects in our framework of IOSTP [3-8], during 3 years of SPI we calculated overall value returned on each dollar invested i.e. ROI of 100:1.We deployed Design for Six Sigma (DFSS) strategy by applying Model-Based Testing activities through computer Modeling&Simulation (M&S) and Design of Experiment because building the model is testing and vice versa.  This approach, (model first; simulate; test; fixing after each step and then iterate the test results back into the model) combined with Design of Experiment is a solution for IOSTP [4]. It produced a set of scenarios used to test target software implementation, fund bugs, serves as test oracles in all test phases and track software development progress. In order to assure stable i.e. controllable and predictable software testing process we apply Six Sigma [8] for software methodology called DMAIC for “Define, Measure, Analyze, Improve, and Control” because it organizes the intelligent control and improvement of existing software test process. Six Sigma is a mantra that many of the most successful organizations in the world swear by and the trend is getting hotter by the day.

3.2 Modeling, simulation, and design of experiments for software testing

The IOSTP framework is a multi disciplinary engineering integrated solution to the testing process such as modeling and simulation (M&S), design of experiments (DOE), software measurement, and the Six Sigma approach to software test process quality assurance and control as depicted in Figure 1 [8]. Its many features can be utilized within the DoD STEP approach as well. Unlike conventional approaches to software testing (e.g. structural and functional testing) which are applied to the software under test without an explicit optimization goal, the DoD STEP approach designs an optimal testing strategy to achieve an explicit optimization goal, given a priori. This leads to an adaptive software testing strategy. A non-adaptive software testing strategy specifies what test suite or what next test case should be generated, e.g. random testing methods, whereas an adaptive software testing strategy specifies what testing policy should be employed next and thus, in turn, what test suite or test case should be generated next [9] in accordance with the new testing policy to maximize test activity efficacy and efficiency subject to time-schedule and budget constraints. The process is based on a foundation of operations research, experimental design, mathematical optimization, statistical analyses, as well as validation, verification, and accreditation techniques.

[image: image1.jpg]



Figure 1. The IOSTP framework [4]

The focus in this paper is the application of M&S and DOE to minimize the test suite size dramatically through black box scenario testing of the ATTRS real-time embedded software application, and using M&S as a test oracle in this case study.

3.2.1 Model-Based Testing through Simulation

As far as this paper is concerned, computer-based simulation is “the process of designing a computerized model of a system (or process) and conducting experiments with this model for the purpose either of understanding the behavior of the system or of evaluating various strategies for the operation of this system [15].” Put simply, a simulation allows one to develop a logical abstraction (an object), and then examine how that object behaves under differing stimuli. Simulation can provide insights into the designs of, for example, processes, architectures, or product lines before significant time and cost have been invested, and can be of great benefit in support of the testing process and training therein. There are several distinct purposes for computer-based simulation. One is to allow the creation of a physical object or system such as the ATTRS, as a logical entity in code. It is practical (and faster) to develop a simulator for testing physical system design changes. Changes to the physical system can then be implemented, tested, and evaluated in the simulation. This is easier, cheaper, and faster than creating many different physical engines, each with only slightly different attributes. Because of these features, network-based simulation tools allow one to develop large detailed models quite rapidly. The focus thus becomes less on the construction of syntactically correct models and more on the models’ semantic validity and the accuracy of their numerical drivers. The simulation tools in today’s market place, such as SLAM II, SIMSCRIPT, SIMAN, GPSS, PowerSim, MATLAB, etc, are robust and reasonably inexpensive. Unfortunately, before a simulation can be of benefit, a model of the system must be developed that allows the simulation developer to construct the computer-based simulation. Modeling is the first step—the very foundation of a good simulation. If the model is valid, it provides an opportunity to study system phenomena in a controlled manner, which may be very difficult otherwise due to an inability to control the variables in a real system.

However, parts of the simulation might not have well known interactions. In this case, one of the goals of simulation is to determine the real-world interactions. To make sure that only accurate interactions are captured, the best method is to start with a simple model, and ensure that it is correct and representative of the real world. Next, the interactions and complexity can be increased iteratively, validating the model after each increment. Additional interactions can be added until an adequate model is created that meets the desired needs. Unfortunately the previous description implies that clearly identified needs are available. This requires a valid statement of requirements. It also requires planning for validation of the model. As in creating any software product, requirements and needs must be collected, verified, and validated. These steps are just as important in a simulation as they are in any system. A system that has not been validated by field-testing against the real world, could produce invalid results. Abstraction and validation are equally necessary to create a reliable model that correctly reflects the real world, and also contains all attributes necessary to make the model a useful tool for prediction. The steps of abstraction and validation are in themselves, however, not totally sufficient to create a valid and usable model. Other steps are necessary to create a model that is of sufficient detail to be useful. These steps that describe the process of producing and using a dynamic simulation are described by Pritsker [16].

One of the most important problems facing the developer of a real-world simulation is that of trying to determine whether the simulation model is an accurate representation of the actual system being studied. In M&S based systems acquisition, computer simulation is used throughout the development and deployment process, not just as an analysis tool, but also as a development, integration, test, verification and sustainment resource. Because of this, verification and validation (V&V) in the simulation development process are most important tasks. If the model is to be credible, and a predictor of future behavior, it is critical that it is validated [17,18].

3.2.2 Design of Experiments for Software Testing

A wide variety of approaches, methods, and analysis techniques, known collectively as design of experiments (DOE), has been around for many decades and is well documented in books like those of Box et al. [19] or Montgomery [20]. One of the principal goals of experimental design is to estimate how changes in input factors affect the results, or responses, of the experiment.

While these methods were developed with physical experiments in mind (like agricultural or industrial applications), they can fairly easily be used in computer-simulation experiments, and software testing as well [21,22]. Careful planning of how to experiment with a simulation model generally repays big dividends in terms of how effectively one can learn about the system and how one can exercise the model further. This section looks at such experimental design issues in the broad context of a simulation project. The term ‘experimental design’ has specific connotations in its traditional interpretation, and some of these will be mentioned below. However, the issues of planning simulations will also be covered in a broader context, which considers the special challenges and opportunities one has when conducting a computer-based simulation experiment rather than a physical experiment. This includes questions of the overall purpose of the project, what the output performance measures should be, how to use the underlying random numbers, measuring how changes in the inputs might affect the outputs, and searching for some kind of optimal system configuration. Specific questions of this type might include:

What model configurations should be run?

How long should the runs be?

How many runs should be performed?

How should the output be interpreted and analyzed?

What is the most efficient way to perform the runs?

These questions, among others, are what one has to deal with when trying to design simulation experiments. In a stochastic simulation like the ATTRS case study, one would really like to know all about the distributions of the output variables. Usually one has to settle for various summary measures of the output distributions. Traditionally, people have focused on estimating the expected value (or mean) of the output variable distribution and this can be of great interest.

For people without statistical training, it can be difficult to organize information about the system under study in a way that aids the design of the experiment. To help clarify this process, the design task itself can be decomposed into five separate steps.

1. Define the goals of the experiment.

2. Identify and classify the independent and dependent variables.

3. Choose a probability model for the behavior of the simulation model.

4. Choose an experiment design plan.

5. Validate the properties of the chosen design.

After defining the goals, an appropriate DOE plan should be chosen. One determines the number of distinct model settings to be run and the specific values of the factors for each of these runs. There are many strategies for selecting the number of runs and the factor settings for each run. These include random designs, combinatorial designs, mixture designs, sequential designs, factorial designs, and optimal designs (one of the latter is chosen in the ATTRS case study in [5]). In this paper one particular method of experimental design applied to software testing is emphasized, i.e. orthogonal array-based robust testing (OART) [21,22], which is based on Taguchi robust design, has a mathematical foundation in linear algebra (specifically, Galois field theory) and began with Euler as Latin squares. This method is exploited in ATTRS field testing in [5]. Black-box testing of software components and system is indispensable and requires test data for all input parameters. The number of test cases needed for exhaustive testing, i.e. for all possible combinations of input data is usually extremely large – almost always too large for the allocated testing resources that are always limited. The only solution is intelligent test case generation to cut down costs and improve the quality of testing. The OART method has been used to test software from many diverse industries, e.g., telecommunications, automotive, and electromechanical systems. The users have typically reported a factor of 2-to-1 or better productivity improvement compared to traditional testing methods [21]. The number of tests needed for this method is similar to the number of tests needed for the one-factor-at-a-time method, and with a proper software tool, the effort to generate the test plan can be small. Its ability to find faults is much better than the one-factor-at-a-time method and approaches 100 percent, especially when used in conjunction with code coverage analysis tools. The test cases generated by this method have the highest effectiveness, measured in terms of the number of faults detected per test. 

By applying the algorithm based on orthogonal arrays and covering arrays, the overall number of test cases can be dramatically reduced compared to exhaustive testing, yet with the certainty that test coverage of all pair-wise input parameter or software component (i.e. configuration) combinations is achieved [22] such as in the next example. Suppose that another SUT has 13 input parameters each with 3 input parameter domains. Then exhaustive testing would require 313=1,594,323 possible input parameter combinations. The OART algorithm calculates only 15 configurations that are already sufficient to cover all pair-wise input parameter interactions. The OART method is applicable to unit testing, integration and system scenario black-box testing, configuration testing, interoperability testing, and web testing [5].

4. ROI metrics and calculation

ROI is a simple arithmetic ratio of benefits to costs, less the costs of course, expressed as a percentage. That is, benefits less costs are the numerator, and costs are the denominator. ROI measures magnitude of benefits to costs, benefits returned above costs, profits achieved after expenses, value of an investment, actual benefits, cost savings, and efficiencies obtained. ROI is a simple and powerful tool for analyzing costs and benefits. Costs and benefits are most often expressed in economic or monetary terms. ROI is a measure of value in dollars and cents. First, benefits are identified and expressed in monetary terms. Then, detailed costs are counted. After the costs and benefits are identified and counted, ROI is calculated by dividing the benefits less costs by the costs, and multiplying the result by 100%. A large ROI indicates money well spent.
[image: image2.emf]2,542%

114%

158%

661%

2,192%

3,217%

%

500%

1,000%

1,500%

2,000%

2,500%

3,000%

3,500%

Inspections PSPsm TSPsm SW-CMM® ISO 9001 CMMI®


Figure 2, ROI of various SPI methods showing decreasing return on investment from left to right [14].

There are a variety of SPI methods for support processes, training programs, management, and supplier selection. Examples include Inspections, PSPsm, TSPsm, SW-CMM®, ISO 9001, and CMMI®. Inspections are meetings held to identify defects in software work products. PSPsm is a curriculum for teaching software engineers basic project and quality management principles. TSPsm is a project, quality, and life cycle management method for large teams of software engineers. SW-CMM® and CMMI® are guidelines for selecting U.S. DoD suppliers. And, ISO 9001 is a set of quality management system requirements for selecting European suppliers. The next step is to identify metrics and models to determine the ROI of these SPI methods. ROI metrics are designed to measure the economic value of a new and improved software process. Each ROI metric is a relevant indicator of how much a new and improved software process is worth. There are only six basic metrics related to ROI, as shown in Table 3. They are costs, benefits, net present value or NPV, benefit/cost ratio or B/CR, return on investment or ROI, and break even point or BEP [14]. Each ROI metric builds upon its predecessor and refines the accuracy of the economic value of a new software process. ROI metrics are not independent or mutually exclusive. Each ROI metric must be considered individually. For example, costs may be astronomical or benefits may be negligible, marginalizing the relevance of the other metrics.

Table 3, ROI metrics showing simplicity of return on investment formulas and their order of application.

	Metric
	Definition
	Formula

	Costs
	Total amount of money spent on a new and improved software process
	
[image: image3.wmf]å

=

n

i

i

Cost

1



	Benefits
	Total amount of money gained from a new and improved software process
	
[image: image4.wmf]å

=

n

i

i

Benefit

1



	NPV
	Discounted benefits based on inflation
	
[image: image5.wmf]Years

Rate

Inflation

Benefits

)

_

1

(

+



	B/CR
	Ratio of benefits to costs
	
[image: image6.wmf]Costs

Benefits



	ROI
	Ratio of adjusted benefits to costs
	
[image: image7.wmf]%

100

´

-

Costs

Costs

Benefits



	BEP
	Point when benefits meet or exceed cost
	
[image: image8.wmf]1

_

_

-

Costs

New

Costs

Old

Costs




Costs consist of the amount of money an organization has to pay in order to implement a SPI method. Benefits generally consist of the amount of money saved by implementing a SPI method. NPV is a method of adjusting or reducing the estimated benefits of a SPI method based on projected or future inflation over time. B/CR is a simple ratio of the amount of money saved implementing a new SPI method to the amount of money consumed [14]. ROI is also a ratio of money saved to money consumed by a new SPI method expressed as a percentage. However, the ROI metric demands that the costs of implementing the SPI method must first be subtracted from the benefits [14]. Break even point is a measure of the amount of money that must be spent on a new SPI method before it begins yielding its benefits.

4.1 Cost Models

Cost models are simple equations, formulas, or functions that are used to measure, quantify, and estimate the effort, time, and economic consequences of implementing a new SPI method. A single cost model may be all that is necessary to estimate the cost of implementing a simple SPI method such as PSPsm and TSPsm [14]. It may be necessary to combine the results of multiple cost models together in order estimate the costs of implementing SPI methods such as Inspections [14].The results of multiple cost models must be combined with other empirical data to estimate the complete costs of implementing complex SPI methods such as SW-CMM( and CMMI([14]. There are eight basic cost models which are useful for estimating key cost elements of the six major SPI methods as shown in Table 4. There are cost models for Inspections effort and training, PSPsm and TSPsm training, and SW-CMM(, ISO 9001, and CMMI( processes and products [14].

Table 2, Cost models of various SPI methods with worked examples for a four person team implementing 10,000 lines of code.

	Method
	Cost Models and Worked Examples
	Hours
	Costs

	Inspections (effort)
	LOC / (Review_Rate ( 2) ( (Team_Size ( 4 + 1)
	708
	a $70,833

	
	10,000 / (120 ( 2) ( (4 ( 4 + 1)
	
	

	Inspections (training)
	Team_Size ( (Fee / Rate + Hours)
	112.4
	b $11,240

	
	4 ( (410 / 100 + 24)
	
	

	PSPsm (training)
	Team_Size ( ((Fee + Expenses) / Rate + Hours)
	1,056
	c $105,600

	
	4 ( ((5,000 + 5,400) / 100 + 160)
	
	

	TSPsm (training)
	Team_Size ( ((Fee + Expenses) / Rate + Hours) + PSP
	1,484
	d $148,400

	
	4 ( ((4,000 + 2,700) / 100 + 40) + 1,056
	
	

	SW-CMM( (process)
	561 + 1,176 ( Number_of_Projects
	1,737
	e $173,700

	
	561 + 1,176 ( 1
	
	

	ISO 9001 (process)
	546 + 560 ( Number_of_Projects
	1,106
	f $110,600

	
	546 + 560 ( 1
	
	

	CMMI( (process)
	(10,826 + 8,008 ( Number_of_Projects) / 2
	9,417
	g $941,700

	
	(10,826 + 8,008 ( 1) / 2
	
	


While a discussion of the eight cost models is beyond the scope of this article, the major inputs, terms, and cost drivers will be explained. LOC refers to lines of code implemented, Review_Rate refers to how fast a product is inspected, and Team_Size refers to the number of inspectors and PSPsm and TSPsm trainees. Fee refers to the cost per person for Inspections, PSPsm, and TSPsm training and Rate refers to the fully burdened cost of an Inspections, PSPsm, and TSPsm trainee. Hours refer to the length of time a trainee spends in Inspections, PSPsm, and TSPsm training and Expenses refers to cost of airlines, meals, hotels, and other incidentals. PSP in the TSPsm training cost model simply indicates that individual TSPsm costs and must be combined with PSPsm costs. Number_of_Projects refer to the number of software projects that will be appraised or audited. The constants 561, 546, and 10,826 refer to the effort required to define software processes for SW-CMM( and CMMI( Levels 3, as well as ISO 9001 Registration. And, the constants 1,176, 560, and 8,008 simply refer to the effort required to meet the documentation requirements for SW-CMM( and CMMI( Levels 3, as well as ISO 9001 Registration.

4.2 Benefit Models

Benefit models are simple equations, formulas, or functions that are used to measure, quantify, and estimate the economic value, profit, savings, or reward of implementing a new SPI method. SPI methods are designed and implemented in order to yield economic or monetary benefits such as increased customer satisfaction, productivity, quality, cost savings, and cycle time reduction. A long used, classical, and authoritative approach to quantifying the benefits of SPI methods is to measure total life cycle costs before and after the introduction of a new SPI method [14].There are seven benefit models or total life cycle cost models which are very useful for estimating the economic value of the six major SPI methods as shown in Table 3. There are benefit models for old costs, Inspections, PSPsm, TSPsm, SW-CMM(, ISO 9001, and CMMI(.

Table 5, Benefit models of various SPI methods with worked examples for a four person team implementing 10,000 lines of code.

	Method
	Benefit Models and Worked Examples
	Hours
	Costs

	Old Costs
	LOC ( 10.51 - Test_Hours ( 9
	45,100
	h $4,509,997

	
	10,000 ( 10.51 - 6,666.67 ( 9
	
	

	Inspections
	LOC ( 10.51 - Inspection_Hours ( 99 - Test_Hours ( 9
	17,425
	i $1,742,533

	
	10,000 ( 10.51 - 708.33 ( 99 - 1,950 ( 9
	
	

	PSPsm
	LOC / 25
	400
	j $40,000

	
	10,000 / 25
	
	

	TSPsm
	LOC / 5.9347
	1,685
	k $168,501

	
	10,000 / 5.9347
	
	

	SW-CMM(
	LOC ( 10.2544 - Inspection_Hours ( 99 - Test_Hours ( 9
	14,869
	l $1,486,933

	
	10,000 ( 10.2544 - 708.33 ( 99 - 1,950 ( 9
	
	

	ISO 9001
	LOC ( 10.442656 - Test_Hours ( 9 - Rework_Savings
	39,402
	m $3,940,156

	
	10,000 ( 10.442656 - 6,670 ( 9 - 4,995
	
	

	CMMI(
	LOC ( 10.2544 - Inspection_Hours ( 99 - Test_Hours ( 9
	14,869
	n $1,486,933

	
	10,000 ( 10.2544 - 708.33 ( 99 - 1,950 ( 9
	
	


Total life cycle cost is an estimate of complete software development and maintenance costs [14].The basic form of the total life cycle cost model is LOC ( (Defect_Rate ( 100 + Software_Effort / 10,000) – Inspection_Hours ( 99 – Test_Hours ( 9. LOC refers to lines of code, Defect_Rate refers to the defect injection rate, and Software_Effort refers to analysis, design, and coding hours. Inspection_Hours and Test_Hours are self explanatory. With a Defect_Rate of 10% or 0.1 and a Software_Effort of 5,100, the basic total life cycle cost model simplifies to LOC ( 10.51 – Inspection_Hours ( 99 – Test_Hours ( 9. This total life cycle cost model signifies complete software development and maintenance costs, less the benefits of Inspections and testing. If no Inspections or testing are performed, then the total life cycle cost is LOC ( 10.51 or 105,100 hours for a 10,000 line of code application. If we perform 708.33 hours of Inspections and 1,950 hours of testing, then the total life cycle cost is LOC ( 10.51 – 708.33 ( 99 – 1,950 ( 9 or 17,425 hours, a savings of 87,675 hours. (This is an extensible model which can be calibrated for varying defect rates, software effort, and Inspections and testing efficiencies. Furthermore, it can be augmented to model the economics of automatic static source code analysis and analyzers. [14]).The Old Cost benefit model represents a reliance on 6,667 testing hours to remove 667 defects, or 45,100 total life cycle hours for 10,000 lines of code. The Inspections benefit model represents a balance of 708.33 Inspections hours and 1,950 testing hours, or 17,425 total life cycle hours for 10,000 lines of code. The PSPsm and TSPsm benefit models signify a productivity of 25 and 5.9347 lines of code per hour, or 400 and 1,685 total life cycle hours for 10,000 lines of code. (The PSPsm and TSPsm benefit models don’t use the total life cycle cost model because they result in zero defects, and therefore exhibit little or no post-delivery economic activity.) The SW-CMM( benefit model results in 2,544 development hours at Level 3, 708.33 Inspections hours, and 1,950 testing hours, or 14,869 total life cycle hours for 10,000 lines of code. The ISO 9001 benefit model results in 4,426.56 development hours, 6,670 testing hours, and Rework_Savings of 4,995 hours, or 39,402 total life cycle hours for 10,000 lines of code. The CMMI( benefit model results in 2,544 development hours at Level 3, 708.33 Inspections hours, and 1,950 testing hours, or 14,869 total life cycle hours for 10,000 lines of code.

5.  Conclusion

In general, a concerted effort is necessary with many different QA activities to be used in an integrated fashion to effectively and efficiently deal with defects and ensure product quality. Error removal greatly reduces the chance of fault injections. Therefore, such preventive actions should be an integral part of any QA plan. Causal analyses can be performed to identify systematic problems and select preventive actions to deal with the problems. To maximize the benefit-to-cost ratio, various risk identification techniques can be used to focus inspection and testing effort on identified high-risk product components. If consequence of failures is severe and potential damage is high, however, they can be used to further reduce the failure probability or to reduce the accident probability or severity. According to the different ways these QA alternatives deal with defects, they can be classified into three categories: defect prevention, defect reduction, and defect containment. 
The survey and classification of different QA alternatives in this article bring together information from diverse sources to offer a common starting point and information base for software quality professionals. As an immediate follow-up to this study, the authors plans to collect additional data from industry to quantify the 

Cost and benefit of different QA alternatives to better support the related cost-benefit analysis. The plans are to package application experience from industry to guide future applications. These efforts will help advance the state-of-practice in industry, where appropriate QA alternatives can be selected, tailored, and integrated by software quality professionals for effective quality assurance and improvement. In order to significantly improve software testing efficiency and effectiveness for the detection and removal of requirements and design defects in our framework of IOSTP we applied Model-Based Testing activities through Simulation (M&S) and Design of Experiment because building the model is testing and vice versa.  It produced a set of scenarios used to test target software implementation, fund bugs, serves as test oracles in all test phases and track software development progress. In order to assure stable i.e. controllable and predictable software testing process we apply Six Sigma for software methodology called DMAIC for “Define, Measure, Analyze, Improve, and Control” because it organizes the intelligent control and improvement of existing software test process. Six Sigma is a strategy and mantra that many of the most successful organizations in the world swear by and the trend is getting hotter by the day because experiences from industry of Six Sigma deployment prove this strategy as solution for business mantra – better, faster, cheaper.

In order to significantly improve software testing efficiency and effectiveness for the detection and removal of requirements and design defects, model-based testing activities using simulation have been advocated. In particular, using an automated target tracking radar system as a case study, some original solutions have been presented as to how modeling and simulation can be efficiently and effectively implemented in the US Department of Defense software testing framework known as the Simulation, Test and Evaluation Process (DoD STEP). By combining the process with optimized design of experiments and the orthogonal array-based robust testing methodology, the number of experiments, i.e. test cases, was dramatically reduced.

The number of test cases needed for exhaustive testing, i.e. for all possible combinations of input data are usually extremely large – almost always too large for the allocated testing resources that are always limited. The only solution is intelligent test case generation to cut down costs and improve the quality of testing. To minimize number of test cases i.e. experiments we applied optimized DOE plan (CENTRAL COMPOSITE ROTATABLE DESIGNS -CCRD Box’s design) which require N=32 trials, with n0 =6 half replica in “NULL" point instead of 55=3125 trials that full factorial design plan requires to find out a mathematical model in the form of a second order polynomial as mathematical description of a research subject (quality of automatic target tracking) with an adequate precision. Also by applying the algorithm based on Orthogonal Arrays and Covering Arrays i.e. OART method, the overall number of test cases can be dramatically reduced compared to exhaustive testing with certainty that test coverage of all pair-wise input parameter or software components (i.e. configurations) combinations is achieved such as in our example of field trial results of ATTRS. Exhaustive testing suite would require the set of test cases to be executed for 34 = 81 possible configurations for changing one-factor-at-a-time method. The OART algorithm L9 calculates only 9 combinations that are already sufficient to cover all pair-wise component interactions to validate our simulation tools by field test. 

This paper is contribution to simulation-based software testing combined with optimized DOE and OART methodology that dramatically reduced number of experiments i.e. test cases, application of computer-based simulation to hardware/software co design, proved effective and efficient test oracle solution, and field testing of embedded-software critical systems such as Automated Target Tracking Radar System, showing a minimum productivity increase of 100 times in comparison to current practice without DoD STEP deployment. 

References:
[1] G. Gordon Schulmeyer, et al, The Handbook of Software Quality Assurance (Upper Saddle River, NJ: Prentice Hall PTR, 1998), p. 9.

[2] Ljubomir Lazić. Software Testing Methodology, YUINFO’96, Brezovica, Serbia&Montenegro, 1996.

[3] Ljubomir Lazić, D. Velasević. Integrated and optimized software testing process based on modeling, simulation and design of experiment”, 8th JISA Conference, Herceg Novi, Serbia&Montenegro, June 9-13, 2003.

[4] Lazić,  Lj., Velašević, D., Mastorakis, N., A framework of integrated and optimized software testing process, WSEAS TRANSACTIONS on COMPUTERS, Issue 1, Volume 2, 15-23, January 2003.

[5] Lazić, Lj., Velašević, D., Applying simulation to the embedded software testing process, SOFTWARE TESTING, VERIFICATION and RELIABILITY, Volume 14, Issue 4, 257-282, John Willey & Sons, Ltd., 2004.

[6] Ljubomir Lazić, M. Medan. SOFTWARE QUALITY ENGINEERING versus SOFTWARE TESTING PROCESS, TELFOR 2003, 23-26 November, Beograd

[7] Ljubomir Lazić, D. Velasević, N. Mastorakis. The Oracles-Based Software Testing: problems and solutions,  WSEAS Multiconference program, Salzburg, Austria, February 13-15, 3rd WSEAS Int.Conf. on SOFTWARE ENGINEERING, PARALLEL & DISTRIBUTED SYSTEMS (SEPADS 2004), 2004.

[8] Ljubomir Lazić, D. Velasević, N. Mastorakis.  Software Testing Process Management by Applying Six Sigma, WSEAS Joint Conference program, MATH 2004, IMCCAS 2004, ISA 2004 and SOSM 2004, Miami, Florida, USA, April 21-23, 2004.

[9] Kai-Yuan Cai. Optimal software testing and adaptive software testing in the context of software cybernetics, Information and Software Technology, 2002;  44:841-855.

[10] H. Ziv and D.J. Richardson, Constructing Bayesian-network Models of Software Testing and Maintenance Uncertainties, International Conference on Software Maintenance, Bari, Italy, September 1997. 

[11] GE's DMAIC Approach, http://www.ge.com/capital/vendor/dmaic.htm, URLs cited were accurate as of April 2002.

[12] K. H. Moeuller and D. J. Paulish, "Software Metrics: A Practitioner’s Guide to Improved Product Development, Chapman & Hall, 1992. 

[12] R. B. Grady, D. L. Caswell, "Software Metrics: Establishing a Company-wide Program", Prentice Hall , 1987, ISBN 0-13-821844-7. 

[13] www.bds.com, URLs cited were accurate as of February 2004.

[14] D.F. Rico, ROI of Software Process Improvement: Metrics for Project Managers and Software Engineers, J. Ross Publishing, Boca Raton, FL, 2004.

[15] Reinholz K. Applying Simulation to the development of Spacecraft flight software. JPL Technical Report, 1999.

[16] Pritsker, A. Alan B. Introduction to Simulation and SLAM II, 3rd ed. New York: John Wiley & Sons, 1986

[17] Sargent, R. G. Validation and Verification of simulation models, Proc. of 2000 Winter Simulation Conf.; 50–59.

[18] Caughlin D. An Integrated approach to Verification, Validation, and Accreditation of models and simulations, Proc. of 2000 Winter Simulation Conf.; 872–881.

[19] Box GEP, Hunter WG, and Hunter JS.  Statistics for experimenters: an introduction to design, data analysis, and model building. New York: John Wiley, 1978.

[20] Montgomery DC.  Design and analysis of experiments. 4th ed. New York: John Wiley, 1997.

[21] Brownlie R, Prowse J, and Phadke M, Robust Testing of AT&T PMX/StarMAIL Using OATS, AT&T Technical Journal, May/June 1992; 71(3): 41- 47.
[22] Kuhn DR, and  Reilly MJ. An investigation of the applicability of design of experiments to software testing. 27th NASA/IEEE Software Engineering Workshop, NASA Goddard Space Flight Center, 4-6 December 2002.


































sm PSP and TSP are service marks of Carnegie Mellon University.


( SW-CMM and CMMI are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.





PAGE  
1

_1122321819.unknown

_1122324065.unknown

_1122324080.unknown

_1122633745.unknown

_1122324049.unknown

_1122321811.unknown

