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Abstract: - In this paper, in order to improve pole placement design performance we used a genetic algorithm 
to help choosing the control parameters and so effectively and efficiently optimize the performance of the 
controller. We discuss this optimization of a pole placement control design for the Inverted Pendulum problem, 
considered an acknowledged benchmark in nonlinear system control. 
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1 Introduction 
How do we find a stabilizing feedback control 
function? Modern control theory gives us a number 
of analytical tools for finding feedback controls. The 
method we chose for optimization of a controller 
designed using pole placement method, is a genetic 
algorithm. There are many optimization algorithms 
but they have a hard time finding the optimal 
(global) solution in multi-parameter search space. A 
genetic algorithm is a parallel, global search 
technique that emulates natural genetic operations. 
Because it simultaneously evaluates many points in 
the parameter space, it is more likely to converge 
toward the global solution.  We used a genetic 
algorithm that modifies parameters for the pole 
placement method of design for a feedback control 
system. 
     As an example of application for this technology, 
we will develop a pole placement designed feedback 
control system that automatically stabilizes an 
inverted pendulum system while moving the cart to 
its commanded position. 
     We used Matlab implementation for all the 
needed components [3]: the control system and the 
genetic algorithm. 
 
 
2   Inverted Pendulum Problem 
The inverted pendulum system is a typical 
benchmark for dynamic non-linear systems. The 
classic example consists of either a point mass at one 
of its end of an ideal rod or a rod without a point 
mass at one of its ends. In each of these two cases, 
the other end of the rod is attached, through a joint 
that can pivot in a plane, to a moving cart. The cart 

can move on the x axis, in the plane of motion of the 
pendulum’s pivot point. The cart accelerates due to a 
force (F) applied to it. The acceleration of the cart 
induces a rotation in the pendulum’s pivot. The 
pendulum can be made to balance at the top of its arc 
by controlling the acceleration of the cart. 
The system we considered consists of a uniform 
distributed mass rod attached to the cart. 
To linearize the equations regarding the pivot angle 
of the pendulum, we assume that the rod does not 
reach a value of the angle (θ) bigger than 0.05 
radians from the vertical. By doing this, we have    
sinθ ≈ θ. Bellow we represent a schematic of an 
inverted pendulum: 
 

 
Fig.1 The inverted pendulum system. 

 
     For our example we assume that: 

 M – mass of the cart  0.5 kg 
 m – mass of the pendulum 0.5 kg 
 b – friction of the cart  0.1 N/m/sec 
 l – length to pendulum  0.3 m 
 center of mass 
 I – inertia of the pendulum 0.006 kg·m2 



 F – force applied to the cart 1 N 
 x – cart position coordinate 
 θ – pendulum angle from the vertical 
 g – gravitational acceleration 9.8 N/m2 

     The linearized system equations can be 
represented in state-space form [6]: 
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     This problem is especially interesting because 
without control, the system is unstable. This is a 
fourth order nonlinear system which is linearized 
about the vertical equilibrium. In this example, the 
angle of the vertical pole is the controlled variable, 
and the horizontal force applied by the cart is the 
actuator input. The goal of the controller is to move 
the cart to its commanded position without causing 
the pendulum to tip over 
 
 
3   Control design using pole placement 
method 
The design is formulated in terms of obtaining a 
closed-loop system with specific pole locations [1]. 
We build a controller for this system using pole 
placement design [2]. The controller generates a 
control signal that is going to be applied to the 
inverted pendulum in order to control the arm in a 
vertical position.  
     The schematic of a full-state feedback system is 
the following:  

 

Fig.2 Full-feedback system schematic. 
     The characteristic polynomial for this closed-loop 
system is:  

det(sI – (A – BK)). 
 

     In this problem R represents the commanded step 
input to the cart. The 4 states represent the position 
and velocity of the cart and the angle and angular 
velocity of the pendulum. The output y contains both 
the position of the cart and the angle of the 
pendulum. We want to design a controller so that 
when an step input is given to the system, the 
pendulum should be displaced, but eventually return 
to zero (i.e. the vertical) and the cart should move to 
it's new commanded position. 
     The C matrix is 2 by 4, because both the cart's 
position and the pendulum's position are part of the 
output. For the state-space design problem we will 
be controlling a multi-output system so we will be 
observing the cart's position from the first row of 
output and the pendulum's with the second row. 
     Since the matrices A and B*K are both 4 by 4 
matrices, there will be 4 poles for our control system. 
By using full-state feedback we can place the poles 
anywhere we want. For example, the poles can be 
chosen as the eigenvalues of the A matrix. We know 
that the size of the real parts of our chosen poles 
have an effect on the rate at which the linearised 
system is fully damped and the imaginary 
components have an effect on the oscillatory 
behavior of the system. 
    Nevertheless, as these poles can be placed 
anywhere we want, one cannot guarantee the 
correction and optimality of the obtained control 
system for the considered problem [5]. Thus, in 
order to improve the control system performance we 
used a genetic algorithm to help choosing these poles 
that help designing a control system and effectively 
and efficiently optimize it’s performance. 
 
 
4   The Genetic Algorithm 
Choosing control parameters for the pole placement 
method can be done in various ways, but none of 
them gives the best solution. Thus, we can use a 
genetic algorithm to optimize these choices and try 
to find the best solution we can. Problems of control 
can be viewed as requiring the discovery of a 
controller or a control strategy that takes the state 
variables of a problem as its inputs and produces the 
values of the control variable(s) as its outputs. 
Genetic programming is well suited to difficult 
control problems where no exact solution is known 
and where an exact solution is not required. 



     The genetic algorithm is a probabilistic algorithm, 
which maintains a population of individuals.        
Each individual represents a potential solution    to 
the problem at hand, and is implemented as some 
data structure. Each solution is evaluated to give 
some measure of fitness. Then selecting the more fit 
individuals forms new population. Some members  
of the new population recombine by means of 
“genetic” operators to form new solutions. There are 
unary transformations like mutations, which create 
new individuals by a small change in only one 
individual, and binary transformations, like 
crossovers, which create new individuals by    
mixing traits from the two parents. After some 
number of generations the search converges and is 
successful if the best individual represents the 
optimum solution [4]. 
     In our genetic algorithm, we use real encoding. 
An individual is a vector of four numbers that define 
the four poles of the system described in the previous 
section. If we denote (Re1, Im1, Re2, Im2) one such 
individual, we can write the poles of the control 
system like: 

( Re1 + i * Im1, Re1 – i * Im1, 
    Re2 + i * Im2, Re2 – i * Im2 ). 

     The testing data that we have chosen for 
calculations of the fitness value in the genetic 
algorithm include a 0.2 m step input for the cart and 
some design criteria as follows: 
 

 Settling time for x and theta of less than 5 
seconds; 

 Rise time for x and theta of less than 1 
second; 

 Overshoot of theta less than 20 degrees (0.35 
radians); 

 Steady-state error within 2%.  
 
     After recording the results for the control system, 
we compute the fitness value as 
 

( ) θθθ Ossrtrtf xx ⋅++++⋅=
1225.0
2525 2222 , 

 
where f = fitness value for current individual; 
 rtx, rtθ = rise time for x and theta; 
 sx, sθ = settling time for x and theta; 
 Oθ = overshoot of theta. 
 
     Our genetic algorithm uses an elitist strategy, 
Monte Carlo method of selection, convex crossover 
and uniform mutation.  
 
 

5   Experimental results 
The tests we ran had 85% probability of crossover 
and 10% or 15% probability of mutation. 
We used different combinations of number of 
individuals in a generation and number of 
generations such as: 100, 200, 250 or 500 individuals 
in a generation that evolved during 100, 250, 500 or 
1000 generations. We observed that our genetic 
algorithm tends to continuously improve the control 
system performance. 
     After the requested number of generations, the 
algorithm returns the best-fit individual.  
     The best individual from all the experiments was: 

(-18.7617 -6.3227 -18.9177 -4.0390), 
and had the fitness value of 4.8722. 
 

 
Fig.3 The evolution of the best-fit individual over 

500 generations 

 
Fig.4 The evolution of average population fitness 

during first 50 generations 
 
     The improvements on the designed control 
system were more significant in the first 100 
generations. We represent the average population 
fitness value per generation during the first 50 
generations (Fig.3) and evolution of the best fit 



individual during generations for our best 
experiment (Fig.4), which had 100 individuals per 
generation and evolved during 500 generations. 
 
6   Conclusions 
This optimization using a genetic algorithm can be 
successfully applied for the optimization of any non-
deterministic design method for a control system, as 
long as there exists a mathematical model to describe 
the dynamics of the system to be controlled. This 
mathematical model will be very useful for fitness 
computations in the genetic algorithm. 
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