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Abstract: - Scale-invariant forms of conservation equations in chemically -reactive fields are described and the 
modified equation of motion is solved for the classical problem of laminar flow by natural convection on a 
vertical hot plate.  The results are found to be in good agreement with the experimental observations of Schmidt 
and Beckmann as well as the classical theories of Pohlhausen and Ostrach. 
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1 Introduction 
A scale-invariant model of statistical mechanics and 
its applications to thermodynamics [4] and derivation 
of invariant forms of conservation equations [5, 6] 
was recently described.  The exact solutions of the 
modified equation of motion for the classical 
problems of laminar [8] and turbulent [9] axi-
symmetric and two-dimensional jets have also been 
reported.  In the present study, following the classical 
investigations of Pohlhausen [10] and Ostrach [11], 
the solution of the modified equation of motion for 
the classical problem of laminar boundary-layer flow 
by natural convection on a vertical hot plate is 
considered. The resulting analytical solutions are 
found to be in good agreement with the observations 
of Schmidt and Beckmann [12] as well as the 
classical theories. 
 

2 Scale-Invariant Form of the 
Conservation Equations for Reactive 
Fields 
Following the classical methods [1-3], the invariant 
definitions of the density ρβ

β

, and the velocity of atom 
uβ, element vβ, and system wβ at the scale β are given 
as [4]  
 

ρ n m m f duβ β β β β= = ∫      ,       uβ = vβ−1 (1) 
 

1m f d−
β β β β β β= ρ ∫v u u

          
  ,         wβ = vβ+1 (2) 

 
Also, the invariant definitions of the peculiar and 
the diffusion velocities are given as [4] 
 

β β β′ = −V u v     ,      1β β β β′= − =V v w V +  (3) 
 

    Next, following the classical methods [1-3], the 
scale-invariant forms of mass, thermal energy, and 
linear momentum conservation equations at scale β 
are given as [5, 6] 
 

( )β
β β β

ρ
ρ

t
∂

+ = Ω
∂

v∇.  (4) 
 

( )β
β β

ε
ε 0

t
∂

+ =
∂
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( )β
β β 0

t
∂

+ =
∂

p
p v∇.  (6) 

 

involving the volumetric density of thermal energy 
ρ hβ β βε =  and linear momentum .  Also, ρβ β=p βv

βΩ  is the chemical reaction rate and hβ is the 
absolute enthalpy. 
    The local velocity  in (4)-(6) is expressed in 

terms of convective  and diffusive 
βv

β β= 〈 〉w v βV  
velocities as [5] 
 

gβ β β= +v w V    ,    g D ln( )β β= − ρV ∇ β  (7a) 
 

tgβ β β= +v w V    ,    tg ln( )β β= −α εV ∇ β  (7b) 
 

hgβ β β= +v w V   ,    hg ln( )β β= −νV ∇ βp  (7c) 

 
where (Vβg, Vβtg, Vβhg) are respectively the diffusive, 
the thermo-diffusive, the linear hydro-diffusive 
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velocities.  For unity Schmidt and Prandtl  numbers, 
one may express 
 

tg g tβ β= +V V Vβ β

β βv

       ,    t ln(h )β β= −αV ∇  (8a) 
 

hg g hβ β= +V V V     ,    h ln( )β β= −νV ∇  (8b) 
 
that involve the thermal Vβt, and linear hydrodynamic 
Vβh diffusion velocities [5].  Since for an ideal gas hβ 
= cpβTβ, when cpβ is constant and T = Tβ, Eq.(8a) 
reduces to the Fourier law of heat conduction  
 

tρ h κ Τβ β β β β= = −q V ∇  (9) 
 

where βκ  and p/( c )β β β βα = κ ρ  are the thermal 
conductivity and diffusivity.  Similarly, (8b) may be 
identified as the shear stress associated with 
diffusional flux of linear momentum and expressed 
by the generalized Newton law of viscosity [5] 
 

ij j ij h j iρ µ /β β β β β β= = − ∂τ v V v x∂  (10) 
 
Substitutions from (7a)-(7c) into (4)-(6), neglecting 
cross-diffusion terms and assuming constant 
transport coefficients with , result in 
[5, 6]  

Sc Pr 1β β= =

 

2D
t
β

β β β β

∂ρ
ρ − ∇ ρ = Ω

∂
+ w .∇ β  (11) 

 

2h D
t
β

β β β β

∂ρ⎡ ⎤
ρ − ∇ ρ⎢ ⎥∂⎣ ⎦

+ w .∇ β  

+ 2h
h h

t
β

β β β β β

∂⎡ ⎤
ρ − α ∇⎢ ⎥∂⎣ ⎦

+ w .∇ 0=      (12) 

 

2D
t
β

β β β β

∂ρ⎡ ⎤
ρ − ∇ ρ⎢ ⎥∂⎣ ⎦

v + w .∇ β  

    + 2 0
t
β

β β β β β

∂⎡ ⎤
ρ − ν ∇⎢ ⎥∂⎣ ⎦

v
+ w v v.∇ =   (13) 

 
    In the first and second parts of Eqs.(12)-(13), the 
gravitational versus the inertial contributions to the 
change in energy and momentum density are 
apparent.  Substitutions from (11) into (12)-(13) 
result in the invariant forms of conservation 
equations [6] 
 

2D
t
β

β β β β β

∂ρ
ρ − ∇ ρ = Ω

∂
+ w .∇  (14) 

 

2
p

T
T T h /( c

t
β )β β β β β β β β

∂
− α ∇ = − Ω ρ

∂
+ w .∇

 
(15) 

 

2 /
t
β

β β β β β β β

∂
− ν ∇ = − Ω ρ

∂
v

+ w v v v .∇  (16) 
 

    An important feature of the modified equation of 
motion (16) is that it involves a convective velocity 

βw that is different from the local fluid velocity βv . 

Because the convective velocity is not locally-
defined it cannot occur in differential form within 
the conservation equations [5].  This is because one 
cannot differentiate a function that is not locally, i.e. 
differentially, defined.  To determine , one needs 

to go to the next higher scale (β+1) where 

βw

βw

βw = 

1β+v becomes a local velocity.  However, at this new 
scale one encounters yet another convective velocity 

1β+w which is not known, requiring consideration of 

the higher scale (β+2).  This unending chain 
constitutes the closure problem of the statistical 
theory of turbulence discussed earlier [5]. 
 
3 Connection Between the Modified 
Form of the Equation of Motion and 
the Navier-Stokes Equation  
The original form of the Navier-Stokes equation with 
constant coefficients is given as [1, 2] 
 

2 1P (
t 3

)∂
ρ ρ = − + µ∇ + µ

∂
v + v v v v.∇ ∇ ∇ ∇.  (17) 

 
Since thermodynamic pressure Pt is an isotropic 
scalar, P in (17) is not Pt.  Rather, the pressure P is 
generally identified as the mechanical pressure that 
is defined in terms of the total stress tensor 

ij t ij ijT P− δ + τ=  as [7] 
 

m ii tP (1/ 3)T P (1/ 3) ii= − = − τ  (18) 
 
The normal viscous stress is given by (10) as 

ii i ii(1/ 3) (1/ 3) (1/ 3)τ = ρ = − µv V v∇.  and since 

tP 0≈∇  because of isotropic nature of Pt, the 
gradient of (18) becomes 
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m
1 1P P ( ) (
3 3

= = µ = µv∇ ∇ ∇ ∇. ∇ ∇. )v  (19) 

 
Substituting from (19) into (17), the Navier-Stokes 
equation assumes the form 
 

2 0
t

∂
− ν∇ =

∂
v + v v v.∇  (20) 

 
that is almost identical to (16) with  except 

that in (16) the convective velocity is different 

from the local velocity .  However, because (20) 

includes a diffusion term and the wβ and 

0βΩ =

βw

βv

βv are 

related by , it is clear that (20) should 
in fact be written as (16). 

β β= +v w Vβ

2

4 A Modified Theory of Laminar Flow 
by Free-Convection on a Vertical Hot 
Plate 
Introducing the conventional boundary layer 
assumption , and neglecting 
transverse convective velocity w

2 2 2/ x / y∂ ∂ ∂ ∂
y << wx, the steady 

forms of the conservation equations (14)-(16) for 
momentum, energy, and mass in the absence of 
reactions Ω =0 but in the presence of buoyancy 
effects become 
 

2

x 2

T Tv vw g
x y T

∞

∞

⎛ ⎞−∂ ∂
= ν + θ⎜ ⎟∂ ∂ ⎝ ⎠

wx x

 
(21)

 
 

2

x 2w
x y

∂θ ∂ θ
= α

∂ ∂
 (22) 

 

yx
vv 0

x y
∂∂

+ =
∂ ∂

 (23) 

 
that are subject to the boundary conditions 
 
y 0=   (24a) x1 v 0θ − = =
 
y = ∞   (24b) xvθ = = 0
 
The dimensionless temperature is defined as 
 

w

T T
T T

∞

∞

−
θ =

−
  (25) 

 

and and wT T∞  
denote the constant temperature of 

the plate and the stationary fluid far away from the 
plate (Fig.1). 
 Following the classical studies [2, 10, 11] one 
introduces the similarity variable η and the stream 
function Ψ as 
 

1/ 4

cy
x

η =  , 3/ 44 cx f ( )Ψ = ν η  (26) 

 
where the parameter c is defined as 
 

1/ 4

w
2

g(T T )c
4 T

∞

∞

⎛ ⎞−
= ⎜ ν⎝ ⎠

⎟  (27) 

 
From (26) the axial and transverse velocities are 
obtained as 
 

2 1/ 2
xv 4 c x f ′= ν

 
(28a) 

 
1/ 4

yv cx ( f 3f− ′= ν η − )
 

(28b) 
 
 The similarity variable η suggests that the 
local momentum boundary layer thickness varies as 
[2] 
 

1/ 4xδ ∝
 

(29) 
 
where the symbol ( ∝ ) denotes proportionality.  
Since the transverse diffusion of axial momentum 
and hence the local hydrodynamic boundary layer 
thickness δ(x) is governed by the diffusion length 
 

2
x2 t 2 (x / w )δ = ν = ν  (30) 

 

With the local time given by 
 
t = x/wx (31) 
 

 (30) and (31) lead to the axial convective velocity 
 

1/ 2
xw x∝  (32) 

 
In view of the local axial velocity given in (28a), the 
axial convective velocity (32) that is independent of 
the transverse coordinate y and hence of f(η) is 
expressed as 
 

2 1/ 2
xw 4 c x= ν  (33) 

 
 With the definition of Ψ the continuity 
equation (23) is identically satisfied and 
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substitutions from (26)-(28), and (33) in equations 
(21)-(22) lead to 
 

Pr 0′′ ′θ + ηθ =  (34) 
 
f f 2f′′′ ′′ ′+ η − + θ = 0  (35) 
 
With the definitions  
 

/ 2ξ = η  , f ′φ =  (36) 
 
and for unity Prandtl number Pr = 1, one obtains 
 

2′′ ′θ + ξθ = 0

0

0

0

 (37) 
 

2 4 2′′ ′φ + ξφ − φ + θ =  (38) 
 
that are subject to the boundary conditions 
 

0ξ =   (39a) 1θ − = φ =
ξ = ∞  0  (39b) θ = φ =
 
The temperature field is readily obtained from the 
solution of (37) and (39) as 
 

1 erf ( )θ = − ξ  (40) 
 
and the resulting temperature profile shown in Fig.1a 
will be compared with the classical results [2, 10-12] 
in the following. 
 Next, from coupling of (37) and (38) one obtains 
 

R 2 R 4R′′ ′+ ξ − =  ,     R
2
θ

= φ −  (41) 

 
By taking the first derivative of (41) and defining 
 

dRG R
d

′= =
ξ

  (42) 

 

and going back to the original variable 2η = ξ
 one obtains 

 
G G G′′ ′+ η − = 0  (43) 
 
that has the general solution 
 

2 2G A B exp( / 2) exp( / 2)d⎡ ⎤= η + −η + η −η η⎣ ⎦∫  
 
 (44) 
 
where A and B are arbitrary constants.  After 
substitution from (41)-(42) into (44) and integration 

of the resulting equation and the use of the result in 
(40) and application of the boundary conditions on φ 
in (39) one obtains 
 

{ }
0

0

z 1 erf (z / 2) dz
( )

2 z 1 erf (z / 2) dz 1

η

∞

⎡ ⎤−⎣ ⎦φ η =
⎡ ⎤− −⎣ ⎦

∫
∫

 

 

 
{ }

{ }
0

0

z 1 erf (z / 2) dz  erf( / 2)

2 z 1 erf (z / 2) dz 1

∞

∞

⎡ ⎤− η⎣ ⎦
−

⎡ ⎤− −⎣ ⎦

∫

∫
 

 
 (45) 
that can also be simplified to 
 

( )0
( ) 2 erf ( / 2) 2 z 1 erf (z / 2) dz

η
φ η = η − −⎡ ⎤⎣ ⎦∫  

 

 (45a) 
 

Since f ′φ = , the axial velocity (28a) can be 
expressed as  
 

2 1/ 2
xv 4 c x= ν φ  (46) 

 
The calculated velocity profiles using (45)-(46) as a 
function of y at two axial locations (x1, x2) for 
parameter c = 1 are shown in Fig.1b and show 
qualitative agreement with the numerical solutions 
of the classical theory of Pohlhausen [2, 10] and 
Ostrach [11]. 
 
 

 
 
 (a) (b) 
 
 

Fig.1 (a) Predicted temperature profile (b) 
Predicted axial velocity profiles at two axial 
locations. 
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The dimensionless axial velocity from (46) is next 
calculated from (45a) describing φ(η) as a function 
of η and shown in Fig.2 for direct comparison with 
the experimental data of Schmidt and Beckmann [2, 
12].  As shown in Fig.2, for Pr = 1, the predicted 
velocity profile is only in qualitative agreement with 
the experimental data.  However, in view of (34)-
(35), (35a), and (52) the solution of the problem for 
general Pr may be written as 
 

( ) 2{erf ( Pr / 2)φ η = η  

 
0

2 Pr z 1 erf ( Prz / 2) dz}
η

− −⎡ ⎤⎣ ⎦∫  (45b) 
 

Close agreement between the predictions and the 
data is achieved (Fig.2) with Pr = 0.5 as compared 
to Pr = 0.73 in the classical theories [2]. 
 

0.5 1 1.5 2 2.5 3
η

0.1

0.2

0.3

0.4

0.5
φ

1 2

 
 
Fig.2 Comparison between the dimensionless 
velocity φ(η) and the data [12] (1) From (45a) with 
Pr = 1 (2) From (45b) with Pr = 0.5 . 
 
 
 It is interesting to examine the effect of the 
inclusion of the transverse convective velocity wy 
that was neglected in the above analysis.  The global 
continuity equation is 
 

yx
ww 0

x y
∂∂

+ =
∂ ∂

 (47) 

 
and it is noted that in (47) the convective velocities 
(wx, wy) at scale β should be viewed as the local 
velocity of the next larger scale i.e. wβ = vβ−1, and as 
such are considered to be locally-defined 
differentiable functions [6].  After substitution in 
(47) from (33) one obtains the transverse convection 
velocity 
 

2

y 1/ 2

2 c yw
x
ν

= −  (48) 
 

The similarity solution being examined herein is 
considered to be valid only in the range x >>1 away 

from the plates leading edge.  Therefore, the result 
(48) does indeed indicate that the transverse 
convective velocity is negligible for large x and thus 
justifies the assumption made in the previous 
analysis. 
 With the convective field (33) and (48) the 
energy and momentum conservation equations (22) 
and (21) will now assume the forms  
 

3Pr 0′′ ′θ + ηθ =  (49) 
 

f 3 f 2f 0′′′ ′′ ′+ η − + θ =  (50) 
 

that as compared to (34)-(35), reveal a closer 
correspondence with the classical theory [2, 10].  
For Pr = 1, the coupling of (49)-(50) leads to 
 

R 3 R 2R 0′′ ′+ η − =  ,     R
2
θ

= φ −  (51) 
 

that does not appear to have a simple analytical 
solution. 
 The assumption Pr = 1 is only necessary for 
the coupling between the temperature and the 
velocity fields (49)-(50).  Therefore, in the present 
theory, the temperature field alone can be 
determined for arbitrary Prandtl numbers.  For 
example, the solution of (34) and (39) is given by 
 

1 erf ( Pr/ 2 )θ = − η  (52) 
 

Similarly, the solution of (49) and (39) is given by 
 

1 erf ( 3Pr/ 2 )θ = − η  (53) 
 

A direct comparison between the predicted 
temperature profiles and the data of Schmidt and 
Beckmann [2, 12] is shown in Fig.3. 
 
 

0.5 1 1.5 2 2.5 3
η

0.2

0.4

0.6

0.8

1

θ

1 2 3 4

 
 
 
 

Fig.3 Comparisons of the predicted temperature 
profiles with the experimental data [12]. (1) Pr = 
0.73 from (53) (2) Pr = 0.73 from (52) (3) Pr = 1 
from (40) (4) Pr = 0.43 from (52). 
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The more complex problem of coupled temperature 
and velocity fields with transverse convection and 
for arbitrary Pr represented by the system (49)-(50) 
requires further future considerations. 
 
6 Concluding Remarks 
The energy equation and the modified equation of 
motion were solved for the classical problem of 
laminar flow by natural convection in the boundary 
layer adjacent to a hot vertical plate in the presence 
of gravitation.  The predicted velocity profile was 
found to be in good agreement with the numerical 
calculations based on the classical theories [2, 10, 11] 
under the assumption Pr = 0.5 (Pr = 0.73) made in 
the present (classical) theory. The predicted 
temperature profiles for various values of Pr were 
compared with the classical results.  For Pr = 0.43, 
the predicted temperature profile was found to be in 
excellent agreement with the experimental 
observations of Schmidt and Beckmann [12]. as well 
as the numerical calculations based on the classical 
theories of Pohlhausen [10] and Ostrach [11]. 
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