
An Agent-Based Knowledge System for Intrusion Detection

RICHARD A. WASNIOWSKI
Computer Science Department

California State University Dominguez Hills
Carson, CA 90747, USA

Abstract: - In this paper we propose a framework for intrusion detection called Fuzzy Agent-Based Intrusion Detection
System . A unique feature of this model is that the agent uses the fuzzy logic to process log files. This reduces the overhead
in a distributed intrusion detection system. We have developed an agent communication architecture that provides a
prototype implementation. This paper discusses the issues of combining intelligent agent technology with the intrusion
detection domain.

Key-Words: - intrusion detection, fuzzy logic, agents, computer network security, Multi-Agent System, Knowledge
System

1 Introduction
Web attacks are rapidly becoming one of the
fundamental threats for information systems
connected to the Internet. When the attacks are
analyzed it is observed that most of them are similar ,
using a reduced number of attacking techniques. It is
generally agreed that classification can help
designers and programmers to better understand
attacks and build more secure detection and response
applications. Over the past few years, intrusion
detecting agents have emerged as a new software
solution. Agents represent a new generation of
computing systems and are one of the more recent
developments in Intrusion Detection Technology.
Agents are applications with predefined goals and
run autonomously. They can for example, monitor an
environment and issue alerts or start intervention
actions based on how they are programmed. In the
case of intrusion detection agents can serve as
detectives or monitors by recognizing and retrieving
data for analysis and develop real-time alerts.
Intelligent agent can assists users and acts on their
behalf. Agents can automate repetitive tasks,
remember events, summarize complex data, learn,
and make recommendations. Intelligent agents
continuously perform two main functions, which
differentiate them from other software programs:
they collect data from environment in which they
operate and reason to interpret data and suggest
actions. Agents can reduce intrusion detection
workload by sifting through large amounts of data for
evidence gathering. While there are multiple
definitions of intelligent agents, their essential
characteristic in intrusion detection is that agents are
software computing entities that perform intrusion
detection tasks autonomously. Agent technology is a

new single technology, but rather the integrated
application of a number of concepts tools and

technologies. Developers normally do not set out to
construct an agent but more typically they add new
functionality to existing application. In order to
define the characteristics of an agent further and to
distinguish them from any other type of program, the
following lists attributes of typical agent systems:
Autonomy. Being able to carry out tasks
independently is the most important feature of an
agent.
Purpose. Agents perform a set of tasks on behalf of a
user or other agents that are explicitly approved and
programmed.
Perception. Agents need to be able to affect is
environment using some type of predefined
mechanisms.
Communications. An agent needs to be able to
interact with the users and other agents.
Intelligence. An agent needs to be able to interpret
monitored events to make appropriate decisions.
Agents reason through simple to elaborate networks
of rules:

IF X AND Y THEN Z.

To develop intelligence in agents, certain steps can be
taken. They involve the following type of rule
sequencing and construction: The user or developer
provides a set of rules that describe a desired
behavior: When X and Y happens, then do Z. The
reasoning system is provided with interfaces to
perform or initiate various des ired actions; for
example, it may require that an alert be made by
sending a message to a system object, by writing a
file, or by other system action that a program can
perform. After the reasoning system is initiated, it

can wait for an event to arrive. It will extract facts
from the event and then evaluate its rules to see if the
new facts cause any of them to fire. If one or more
rules fire, it may cause additional action to be
initiated or a record to be written or updated. The
above process leads to the creation and use of
conditional rules and logic, which can be coded in a
variety of ways.
Here is an example:

IF (Condition 1)
OR (Condition 2)
AND (Condition 3)
THEN (Action)

Unlike an expert system, an agent is embedded in its
environment and can perceive and react to it using
inputs of conditions. It can dynamically construct
new rules as it works; in other words agents are
capable of using sensors to monitor their
environment, develop new rules, and then take
actions independently.

2 Intrusion Detection Problem
A fuzzy set may be represented by a mathematical
formulation known as a membership function. That
is, associated with a given linguistic variable are
linguistic values or fuzzy subsets expressed as
membership functions which represent uncertainty or
imprecision in values of the linguistic variable. These
functions assign a numerical degree of membership
to a crisp (precise) number. More precisely, over a
given universe of discourse X , the membership
function of a fuzzy set, denoted by µ(x), maps
elements x ? X into a numerical value in the closed
unit interval, i.e. µ(x): X ? [0, 1].Implementation of
a fuzzy system requires assigning membership
functions for inputs and outputs. Inputs to a fuzzy
system are usually measured variables, associated
with the state of the controlled object, that are
fuzzified before being processed by an inference
engine. The heart of the controller inference engine
is a set of if-then rules whose antecedents and
consequences are made up of linguistic variables and
associated fuzzy membership functions.
Consequences from fired rules are numerically
aggregated by fuzzy set union and then defuzzified to
yield a single crisp output as the control. For detailed
introductions to fuzzy set operations, and concepts of
fuzzification, inference, aggregation, and
defuzzification see [26,27]

3 IDS Design methodology
We developed and implemented an intrusion
detection architecture called Fuzzy Agent-Based
Intrusion Detection System . The architecture of this
system is presented below:

Fig. System Architecture

Agent software packages are readily available from
various sources, including the Web, from such sites
as agentland.com. Using an agent, as opposed to a
search engine, has the advantage that all of these
links can be viewed at any time. The advantages of
this architecture is that a low volume of data must be
sent over network in a distributed intrusion detection
scenario This feature allows easy exploration of the
trade-off between sensitivity and selectivity that
affects the rate of false decisions. The distributed
nature of the system and the fact that each agent is an
autonomous entity increases the efficiency of the
processing.
A MAS (multi agent systems) is an emerging
subfield of AI that aims to provide both principles for
construction of complex systems involving multiple
agents and mechanisms for coordination of
independent agents’ behaviors. While there is no
generally accepted definition of “agent” in AI [16],
for the purposes of this study, we consider an agent to
be a software entity. A MAS allows the subproblems
of a constraint satisfaction problem to be
subcontracted to different problem solving agents
with their own interests and goals. An ontology is a
formal, explicit specification of a shared
conceptualization. An ontology can be viewed as a
document or file that formally defines the relations
among terms. The most typical kind of ontology is
defined in terms of a taxonomy of terms and a set of
inference rules.

Any Knowledge Based System consists of at least
two fundamental parts: domain knowledge and
problem-solving knowledge. Ontologies mainly play
a role in analyzing, modeling and implementing the
domain knowledge [24].

The purpose of using ontologies iis to enable
knowledge sharing among agents. For example, the
action of “add new rule” will evoke the same feature
set, in terms of structure and behavior, in both the
sender agent and the receiver agent.
So agents can understand the structure of the system
and the meaning of agent actions . In figure 2, it
shows the five actions: “ADD”, “ROMOVE”,
“REPLACE”, and “SET TIME”.

Agent action type Corresponding operations

ADD Adding a new rule

REMOVE Removing rule

REPLA CE Removing the former rule
and adding a new one

SET TIME Set or reset the total time

Fig 2. Agent action types

A key feature in then is to specify the common
ontology in a representation that subsumes the
models for individual agents. We adopt Protégé
2000, developed by Stanford University, to generate
form-based interfaces that could check for
constraints violation. There are two steps to
establish an ontology. Firstly, we get the “bean
generator” for Protégé from web site. With the
“beangenerator”, it can be used to generate java files
representing an ontology that is used for with the
JADE (Java Agent DEvelopment framework)
environment. Thus, based on these standardization
and ontologies, the agent implementation in the
JADE by Bellifemine [3] can be applied here.
The “beangenerator” is designed as a plug-in for
Protégé. Secondly, the process of generating is easy
since programmers are required to enter some related
concepts, and their slots with data type.
Agent Communication: agent will not move within
different hosts. Agents communicate with each other
by sending alert information via Messages. Agent
task:
1. carry common intrusion types and attern to
correlate simple alerts
2. send back correlated alerts to central console

3. communicate with agents

4 Experiments
While conducting the research for this paper, the
researcher was provided full access to the SNORT
logs [26,27] The basic SNORT architecture is made
up of three main parts, the packet decoder, the
detection engine and the alerting and logging system.
The packet decoder can collect TCP/IP traffic at a
blinding rate. Before the engine can compare any of
the signatures in its database to the packets, the
packet data is passed through a number of
user-configurable pre-processors. These
pre-processors can reassemble TCP packets into
sessions, handle fragmented traffic, and even detect
scans and probes. After the preprocessors have
formatted the packet data to make it easier to search,
the detection engine examines the data for contents
that match any of the signatures in its database. If any
of the signatures are matched, then the action
prescribed for the signature is taken by the third part
of SNORT, the alert/log system. If configured,
SNORT will also capture the packet data relating to
the alert and store it on the hard drive. The alert
system will publish alerts to an area on the file system
for examination or to a remote analysis console
through standard remote log formats like syslog. To
encode the descriptions of various attacks a range of
positive integers is assigned to each of the attack in
the following way.
Entry point (1 bit of information) Web server
software (ISAPI filters, Perl modules, etc.) or web
application (HTML, server-side and client-side
scripts, server components, SQL sentences, etc.)
Vulnerability (3 bits of information) Code Injection,
HTML manipulation, Overflows, Misconfiguration
(default directories, sample applications, guest
accounts, etc.) X if Not applicable,
Threat (3 bits of information): Authentication ,
Authorization, Confidentiality, Integrity,
Availability,
Auditing Action (4 bits of information): Read,
Modify, Delete, Fabricate, Impersonate, Bypass,
Search, Interrupt, Probe, Unknown,
Length (1 bit of information): Expected, Unexpected
(unusually long), X - Not applicable,
HTTP element (7 bits of information): GET/POST,
HOST , COOKIE, REFERER, TRANSLATE ,
SEARCH , PROPFIND
Target (1 bit of information) Web application
(source files, customers’ data, etc.), Platform (OS
command execution, system accounts, network, etc.)
Scope (1 bit of information) Local (one user

affected), Universal (all users affected), X - Not
applicable
Privileges (1 bit of information), 0 - Unprivileged
user, 1 - Administrator/root, X - Not applicable .

Let us consider typical common attacks directed
against different types of web servers and platforms.

0, X, 1, 9, 0, 01, 1, X, 0
0, 1, 2, 0, 0, 01, 0, X, X
1, 0, 1, 3, 0, 01, 1, X, 0

Let us explain the last description. The web
application allows SQL injection. The attacker
exploits this vulnerability by executing a SQL Server
extended procedure and adds himself to the OS users.
These encoding vectors are useful in a number of
ways, especially in intrusion detection systems. An
intrusion detection system (IDS) detects and reports
attempts to break into or misuse networked computer
systems in real time. A traditional IDS consists of
three functional components: A monitoring
component, such as a packet capturer, which collects
traffic data. An inference component, which analyzes
the captured data to determine whether it corresponds
to normal activity or malicious activity. An alerting
component, which generates a response when an
attack has been detected. This response can be
passive such as writing an entry in an event log or
active such as changing configuration rules in the
firewall to block the attacker’s IP address. Coding
web attacks into vectors could helps the post
processing of IDS alerts. Encoding web attacks into
vectors helps the application-level firewall to decide
about the action to be taken when an attack is
detected. The most important advantage of this
scheme over data compression methods is that the
decompression is not needed in the applications. Real
world examples of attacks against different
platforms, web servers, and applications are given to
illustrate how this taxonomy can be applied.

5 Conclusion
As computer attacks become more and more
sophisticated, the need to provide effective intrusion
detection methods increases. Network-based,
distributed attacks are especially difficult to detect
and require coordination among different intrusion
detection components or systems. We propose a
solution that is more effective than current IDS’s.
This architecture allow s local analysis and sharing of
results as well as minimizing the communication
costs.

References:
[1] S. Axelsson. “Intrusion Detection Systems: A
Taxonomy and Survey.” Technical Report No 99-15, Dept
of Computer Engineering, Chalmers University of
Technology, Sweden, March 2000
[2] J. Balasubramaniyan, J.O. Garcia-Fernandez, D.
Isacoff, E.H. Spafford, and D.M. Zamboni. “An
Architecture for Intrusion Detection using Autonomous
Agents.” Technical Report, Dept. of Computer Science,
Purdue Univ., West Lafayette, IN, 1998
[3] Bellifemine, F., Caire, G., Trucco, T., & Rimassa G.
(2000). JADE Programmer’s Guide. Retrieved October
12, 2001 from World Wide Web:
http://sharon.cselt.it/projects/jade/.
 [4] Bloemeke, Mark and Marco Valtorta. "The Rumor
Problem in Multiagent Systems." USC CSCE
TR-2002-006, Department of Computer Science and
Engineering, University of South Carolina, Columbia,
2002
[5] D. Bulatovic and D. Velasevic, “A Distributed
Intrusion Detection System Based on Bayesian Alarm
Networks,” In Proc. of CQRE’99, LNCS 1740, pp.
219–228, 1999.
[6] J. Cannady. “Artificial Neural Networks for Misuse
Detection.” In Proc. of the 21st National Information
Systems Security Conf. , VA, 1998, pp. 441-454
[7] C.A. Carver, J.M. Hill, J.R. Surdu, and U.W. Pooch.
“A Methodology for using Intelligent Agents to Provide
Automated Intrusion Response.” In Proc. of the IEEE
Systems, Man, and Cybernetics Information Assurance
and Security Workshop , West Point, NY, 2000
[8] Cowell, Robert G., A. Philip Dawid, Steffen L.
Lauritzen, and David J. Spiegelhalter. Probabilistic
Networks and Expert Systems . Springer-Verlag, 1999
[9] William DuMouchel. “Computer Intrusion Detection
Based on Bayes Factors for Comparing Command
Transition Probabilities,” Technical Report No. 91, Feb
99, National Institute of Statistical Sciences.
[10] Caglayan, A. and Harrison, C. (1997) Agent
Sourcebook, New York: Wiley Computer Publishing.
[11] Franklin, S. and Graesser, A. (1996) "Is It an Agent,
or just a Program?: A Taxonomy for Autonomous
Agents," Proceedings of the Third International Workshop
on Agent Theories, Architectures, and Languages,
Springer-Verlag.
[12] Kotz, D. and Gray, B. (May 1, 1999) "Mobile Agents
and the Future of the Internet," Workshop Autonomous
Agents, Seattle, WA.
[13] Vaibhav Gowadia, Csilla Farkas, and Marco Valtorta.
“Intrusion Analysis with Soft Evidential Updates,” USC
CSCE TR-2001-005, Department of Computer Science,
University of South Carolina, Columbia, 2002.
[14] G. Helmer, J. Wong, V. Honavar, and L. Miller.
“Lightweight Agents for Intrusion Detection.” Submitted
to Journal of Systems and Software
[15] Finn V. Jensen. Bayesian Networks and Decision
Graphs. Springer, 2001.
[16] Russell, S. J. & Norvig, P.(1995). Artificial
Intelligence—A modern approach. Upper saddle River
,NJ:Prentice Hall Inc.

 [17] W. Jansen, P. Mell, T. Karygiannis, and D. Marks.
“Applying mobile agents to intrusion detection and
response.” NISTIR -6416, September 1999
[18] Young-Gyun Kim, M. Valtorta, and J. Vomlel. “A
Prototypical System for Soft Evidential Update.” USC
CSC E TR2002-005, Department of Computer Science and
Engineering, University of South Carolina, Columbia,
2002.
[19] Steffen L. Lauritzen and David J. Spiegelhalter.
“Local Computations with Probabilities on Graphical
Structures and their Application to Expert Systems.”
Journal of the Royal Statistical Society, Series B, 50
(1988), 2, pp.157-224.
[20] W. Lee and S.J. Stolfo. “Data Mining Approaches for
Intrusion Detection.” In Proc. of the 7th USENIX Security
Symp, San Antonio, TX, 1998, pp.79-94
[21] M. Meneganti, F.S. Saviello, and R.Tagliaferri.
“Fuzzy Neural Networks for Classification and Detection
of Anomalies.” IEEE Trans. On Neural Networks , 9/5,
1998, pp. 848-861
[22] Richard E. Neapolitan. Probabilistic Reasoning in
Expert Systems. Wiley, 1990.
[23] S. Northcutt, Network Intrusion Detection: An
Analyst's Handbook, New Riders, 1999
[24] J. Moy. OSPF version 2. Internet Draft, RFC -2178,
July 1997
[23] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference.
Morgan-Kaufmann, 1988.
[24] Studer, R., Benjamins, V. R., Fensel, D. (1998).
Knowledge Engineering: Principles and Methods. Data
Knowledge Engineering, 25 (1 -2).
 [25] Marco Valtorta, Young-Gyun Kim, and Jirí Vomlel.
“Soft Evidential Update for Probabilistic Multiagent
Systems.” International Journal of Approximate
Reasoning , 29, 1 (January 2002), pp.71-106.
[26] A. Valdes and K. Skinner. “Adaptive, Model-Based
Monitoring for Cyber Attack Detection.” In Proc. RAID,
2000, pp. 80-92
[27] Wasniowski RA, Agent Based Design Methodology,
RAW-TR-00-12
[28] Wasniowski RA, Intrusion Detection System with
Fuzzy Logic Agent, RAW-T R-01-09
[29] Wooldridge, M., and Jennings, N. (1995) "Intelligent
Agents: Theory and Practice," Knowledge Engineering
Review, Vol. 10, No. 2.

