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Abstarct:  --
Pricing is an important element of production-distribution system for most firms.  In the short term, the firm may use pricing (i.e. discounts) to move stocks to resellers.  In the intermediate term, it may use both pricing and production policies to smooth the seasonal demand for a product.  In this note, we show that a broad class of price-demand relationships can be incorporated in pricing-production planning models for multiple products having independent demands.
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1  Introduction
The need for co-ordination between marketing and production decisions in a firm is well recognised by managers and researchers.  One of the strategic interfaces between the two functions is the coordination of pricing and production policies for the short as well as intermediate term. In a chapter on marketing-production joint decision making, Eliashberg and Steinberg review the models in the strategy area including the models of pricing-production planning [4]. Most of the pricing-production models consider the problem to be a single-product problem. Yet the strategic coordination in pricing and production policies in practice may occur in a multiple product environment.  In the very short term, the firm may use pricing to transfer inventories to the resellers.  Similarly demand for a product may be highly seasonal and the firms have to plan production as well as discounting strategy for products in low demand seasons. 

There have been a few papers that present models of joint pricing and production policies for multiple products. Bergstrom and Smith present a multi-product model of joint pricing and production [2]. In this model, demands for the products are independent and the demand-price relationship for each product is assumed to be linear. Abad presents a multi-product optimal control model and provides a heuristic for the two-product case [1].  Monroe and Zoltners consider the problem of pricing a product line under a resource constraint [6]. The model is a single period (i.e. static) model and initial inventories are not included in the analysis.  A solution procedure is developed for the case in which demands are linear and independent. 

In this paper, we generalize the pricing-production planning model for multiple products having independent demands beyond the linear demand case. We will assume a general demand-price relationship which would include the important case of exponential demand function. 

2.  Model Formulation 

We are assuming that products have independent demands.  We first describe our assumptions about the demand function without using the product and time subscripts.  Let D(p)  be the demand rate associated with the selling price  p.  We assume:

i) 
D(0) < ,  D(pm ) = 0   
    
for some  pm  (0, ).
ii) 
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iii)The marginal revenue  is an increasing function of p; i.e.
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is an increasing function of p. This assumption implies that 1/D is a convex function of p.

iv)  Inverse function of  D(p) exists.  Let      this inverse function be denoted as  p = f(D).

The assumptions listed above are not restrictive.  A broad class of demand-price relationships should satisfy the above assumptions.  One important demand-price function is the constant price elasticity function D(p) =  p - e  where    is a constant and  e  is the price-elasticity.  It is easy to see that in this case assumptions i) and ii) are satisfied for  e > 0.  Assumption iii) is satisfied when  e  1 ;  i.e. when demand is elastic. Also 
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Let

Ii t
=Inventory level of product    i at the     

         end of period t

Xi t
=Production of item i in period t

pi t
=Price of product i in period t

Di t (pi t )=Deseasonalized demand for                                  


product i in period t

mi t
=Seasonal index for product i for 


 
  period t. mi t’s are positive, known           
  constants 

mi t Di t (pi t )=Demand for product i in 


  
period t

ci
=variable cost for product i

   ki
=units of capacity required to  
produce one unit of product i

Ut
=Available capacity in period t

T
=Length of the planning horizon

We assume that the objective of the firm is to maximize total contribution to profit which is given by

=   Revenue - variable production     


            cost

      =   
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We assume that backordering is not allowed and there is fixed capacity available in period t.  The pricing-production planning problem faced by the firm is:

Problem (P)
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subject to
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Constraint (3) are inventory balance equations.  Constraint (4) represent the capacity restrictions.  Problem (P) is a non-linear programming problem.  Since  
Di t (pi t )  is a non-linear function of (pi t ), the objective function (2) is non-linear and similarly constraints (3), which are equalities, are also non-linear.  Note that objective function (2) may not be a concave function of  p.  Also constraints (3) are non-linear equalities.  Given these two difficulties, Problem (P) is hard to solve using the standard non-linear programming packages. It may be noted that when Di t (pi t )  is a linear function of  pi t , then Problem (P) can be formulated as a quadratic programming problem wherein the objective function is strictly concave [3][6].
In what follows, we present an important property of the demand-price relationship.  We use this property to transform (P) into a problem that is easier to solve.  Without loss of generality, let  p = pi t  and  
Di t (pi t ) = D(p).  Also given assumption iv) about the demand function the inverse function exists, i.e.  p = f(D).

3.   Convexity Analysis

Proposition 1

Let  
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.  Then given assumptions i), ii) and iii) about demand function D(p),  
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 is concave on  D > 0.

Proof
Note the marginal revenue is defined as
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Now according to assumption iii), MR is 
an increasing function of p.  Hence
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However given assumption ii),  
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Thus  (D) = f(D)  D  is concave on  
D > 0.                                
                                
Q.E.D.                              


                               
Given Proposition 1, we propose the following transformations of Problem (P).  Let the decision variables be  Di t  instead of  pi t . Then  pi t = f(Di t ) and pi t Di t (pi t ) = f(Di t )Di t = 
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Problem  P1:





(3.1)
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subject to
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Given Proposition 1 and given that mit > 0, objective function (9) is a concave function of the decision variables D it , Xit  and  Ii t .  (It is easy to show that the hessian of 
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 is negative semi-definite).  In addition, constraints (10) now are linear equalities. Thus Problem (P1) is a well posed problem with a concave objective function and linear constraints.   The left hand sides in (11) are quasi-convex and left hand sides in (10) are affine.  Hence Kuhn-Tucker necessary conditions are also sufficient [See 2, p. 147].  Problem (P1) can be solved without much difficulty using the standard non-linear programming software. It should be noted that technology exists for solving large size problems, e.g. problems involving tens of thousands of variables and thousands of constraints in a matter of hours. This means the firm can plan for a planning horizon of several time buckets and for a product line containing several products.
Problem (P1) can be extended to include backordering, overtime and employment smoothing as in the classical linear programming production planning models [5].  In addition, m it parameters can incorporate other temporal effects besides the seasonal effects.

The output of the model is a pricing and a production plan specifying price as well as production quantity for each product for each period. The production plan can be an input to MRP explosion procedure to determine sub-assemblies, components and raw materials requirements period by period and to determine labour and machine hours needed in each period. These material and capacity plans can in turn be projected into cash flow requirements. Given that prices and therefore revenues are also projected, the procedure can lead to pro-forma budget outlining revenue as well as direct costs in detail for the firm.
4. Conclusions
We have shown that a broad class of demand-price relationships can be incorporated in independent demand pricing-production models along with seasonality and other temporal effects.  These models have desirable structure so that they can be solved using standard software.  The models presented in this note are deterministic but they can be applied on a rolling basis to re-plan the pricing and production policies for the immediate future. Since beginning inventory of the product, 
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  is an input in the model, the form will be able to update its discount as well as production plan based upon the realized demand and the resultant beginning inventory as the clock moves and the planning horizon rolls.
The approach can be extended to the case in which demands for products are not independent. In this case, one will have to find inverse functions 
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 Such functions should be easy to obtain when demand is a linear function of prices
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 . When demand function is exponential, perhaps similar linear transformation can exist in the logarithmic space. However, proving that the objective function is pseudo-convex  may be difficult .
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