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Abstract:- In the present paper, the problem of stabilization around periodic orbits for PVTOL (Planar
Vertical Takeoff and Landing) aircrafts is considered. Using the reduced dynamic model for PVTOL
aircrafts, a control law is obtained for tracking control of one state variable of the system, where a
modified version of the Van der Pol system was employed as our source of periodic signals (reference
signals to follow). The other state variables were forced to be bounded. The final controller obtained
was then applied to the no-reduced dynamic model of PVTOL aircrafts. Simulation results shown the
performance of our controller.
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1 Introduction

Recently, trajectory tracking control and con-
figuration stabilization of planar vertical takeoff
and landing (PVTOL) aircrafts has been studied
(see [3], and references cited in it). This system
offers a challenging example for nonlinear con-
trol studies ([2]). The PVTOL dynamic model
captures the essential features for convectional
aircraft with fixed wing. A simplified dynamic
model of this system can be obtained by assuming
no coupling between rolling moment and lateral
acceleration. Using this model, we construed a
dynamic controller for the stabilization problem
around periodic orbits. The controller obtained
was then applied to the original dynamic model
to study, numerically, the performance of our de-
sign. The source of periodic orbits is a modified
Van der Pol oscillator which has periodic signals
very close to sinusoidal signals (see [1]). The main
interest of the present paper is to design a con-
trol law such that the plane follows some kind
of periodic signals. So, the objective is to navi-
gate the plane along almost periodic movements.
One motivation for this could be a military tactic
for programming missile evasion. The novelty of

this control law is the programming of periodic
movements in the aircraft.

The PVTOL model is a dynamic model that
has a minimum number of states and inputs but
retains the most important features of aircrafts,
especially for the Harrier one ([4], page 472).
Figure one shows the prototype PVTOL system,
where x, y is the center of mass of the aircraft,
and the angle θ is the relative angle with respect
to the x-axis. The reference x = 0 is not neces-
sary the sea level (see Figure 10.15 in [4]).This
model is as follows ([4], page 472):

ẍ = −sin(θ)u1 + εcos(θ)u2

ÿ = cos(θ)u1 + εsin(θ)u2 − 1
θ̈ = u2 (1)

where ′ − 1′ is the gravitational acceleration and
ε is the small positive coefficient giving the cou-
pling between the rolling moment and the lateral
acceleration of the aircraft. The control inputs
u1 and u2 are the thrust and the rolling moment,
respectively. ẋ, ẏ, and θ̇ are the corresponding
velocities.
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Fig. 1 PVTOL aircraft.

For the propose of our control design, the PV-
TOL dynamic model (1) can be simplified, by let-
ting ε = 0, which corresponds for the no-coupling
case between rolling moment and lateral acceler-
ation ([4]), to:

ẍm = −sin(θ)u1

ÿm = cos(θ)u1 − 1
θ̈ = u2. (2)

2 Problem Statement

The modified Van der Pol equation has a gen-
eral representation given by the following second
order scalar nonlinear differential equation:

v̈+ ε[(v− v0)2 +
v̇2

µ2
− ρ2]v̇+µ2(v− v0) = 0. (3)

This system possesses a periodic solution (a limit
cycle) that attracts every other solutions except
the unique equilibrium point (v, v̇) = (v0, 0).
So, the parameter ρ controls the amplitude of
this limit cycle, the parameter µ controls its fre-
quency, and the parameter ε controls the speed
of the limit cycle transients (see [1] for details).
In this respect, v0 can be interpreted as the DC
component of the signal v(t).

Phase portrait of equation (3) is shown in Fig-
ure two for the parameter values ε = 0.1, ρ2 = 10,
v0 = 0, and µ2 = 1.

Fig. 2 Phase portrait: x1 = v versus x2 = v̇.

Our objective control is, given the two output
equations:

y1 = θ − v, (4)

and

y2 = x2
m + y2

m − r2, (5)

where r is a positive constant, find u1 and u2 such
that

lim
t→∞ y1 = 0, (6)

and

lim
t→∞ y2 = 0. (7)

The second time derivatives, with respect to time,
of (4) and (5), produce:

ÿ1 = θ̈ − v̈ = u2 − v̈ (8)

and

ÿ2 = 2xmẍm + 2ẋ2
m + 2ymÿ2

m + 2ẏ2
m. (9)

Doing the following assignments:

ÿ1 = −a1ẏ1 − a2y1 (10)

and
ÿ2 = −b1ẏ2 − b2y2; (11)

from (8), (9), and (2), the following control laws
are obtained:

u2 = −a1ẏ1 − a2y1 + v̈ (12)



and

u1 =
−b1ẏ2 − b2y2 − 2(ẋ2

m + ẏ2
m − ym)

−2xmsin(θ) + 2ymcos(θ)
, (13)

where v̈ is obtained from (3). If the constant
parameters a1, a2, b1, and b2 are positives, then
systems (10) and (11) are asymptotically stables.
So, these two last equations solve our control ob-
jective. Observe that the objective in equation
(7) means that the plot xm versus ym is a circle
of radius r.

3 Simulation Experiments

Simulation experiments were programmed using
system (1) with ε = 0.01; i.e., xm = x and ym =
y. This value of ε corresponds to a typical Harrier
aircraft ([4], page 477). To avoid singularities in
(13), the next modification was used:

bx = −2xmsin(θ) + 2ymcos(θ) (14)

ax = −b1ẏ2 − b2y2 − 2(ẋ2
m + ẏ2

m − ym) (15)

and
u1 =

ax
cx
,

where cx = 0.1 if |bx| < 0.1 and cx = bx otherwise.
System (3) was programmed with ε = 0.1, ρ = 1,
µ = 5, and v0 = 0. The other parameters were:
b1 = b2 = a1 = a2 = 100, and r = 1. Using zero
initial conditions for all variables but v(0) = 0.01,
the simulation results are shown below.

Fig. 3 Simulation results: a)Top: x(t),
b)Bottom: ẋ(t).

Fig. 4 Simulation results: ẋ(t) versus x(t).

Fig. 5 Simulation results: a)Top: y(t),
b)Bottom: ẏ(t).

Fig. 6 Simulation results :a)Top: θ(t),
b)Bottom: θ̇(t).



Fig. 7 Simulation results: θ(t) versus θ̇(t).

From Figures three and five, the reference po-
sition y is regulated meanwhile reference x is a
bounded time varying one. This implies that the
aircraft is moving in the x − axis with altitude
y regulated to a prescribed level. Figure seven
shows the convergence to a periodic orbit of the
state variables θ and θ̇ (the movement is a spiral
starting at the center of the picture).

4 Conclusions

In the present paper, a control design for tracking
control of periodic signals in flight control prob-
lem is shown. The source of periodic signals is
done via a modified Van der Pol oscillator. Per-
haps, a motivation for this could be a military
tactic for missile evasion.
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