

How to design Trellis Codes with Large Distance Properties

RANJAN BOSE

Department of Electrical Engineering
Indian Institute of Technology, Hauz Khas, New Delhi 110016 INDIA

 http://paniit.iitd.ac.in/~rbose

Abstract: - We present a novel method for constructing trellis codes, based on recursive nonlinear
equations. Using this method, trellis codes having good code rates (R = k/n) can be constructed. At the
same time, the method allows the code-designer to construct a trellis with a large free distance, dfree, at the
cost of a larger number of states in the trellis. It has been shown in this paper that for the code rate, R, less
than a critical rate, Rc, the free distance can be made as large as desired for large n. This design
methodology provides the freedom to play with the code performance and the code rate of the trellis code.
Using this method, a rate 3/4 trellis code has been constructed with dfree = 12.

Key-Words:- Trellis Codes, Free Distance, Error Control Codes

1 Introduction
Convolutional codes and other trellis codes can
be conveniently described using a trellis [1, 2].
A trellis is a graph whose nodes are in a
rectangular grid, semi-infinite to the right. The
number of nodes in each column is fixed, and
corresponds to the states in the trellis diagram.
The code rate of a trellis code reflects the
fraction of the codeword that consists of the
information symbols, and is defined as

n
kR = , (1)

where k is the information length (prior to
coding) and n is the codeword length (after
encoding). The free distance, dfree, of a tree code
is the smallest Hamming distance between any
two distinct code sequences [2, 3].

 Trellis codes are typically constructed using a
shift register and a logic circuit, as shown in Fig.
1. The constraint length, ν, is an important
descriptor of a trellis code. For a binary trellis
code, the number of states in the trellis is given
by ν2 . Because of practical consideration,
practical trellis codes use small integer values of
n and k (frequently, k = 1). Therefore, it is

difficult to design a practical trellis code with
code rate close to unity, as is possible for block
codes (such as a Reed-Solomon code [4]).
 Several authors have explored the connection
between quasi-cyclic codes and convolutional
codes [5-8]. The construction of MDS
convolutional codes is discussed in [9] where
again the connection between quasi-cyclic codes
and convolutional codes is exploited. A code
construction procedure for geometrically
uniform trellis codes has been proposed in [10].
Analog error correcting codes based on chaotic
dynamical systems have been studied in [11]
where the authors mention that a convolutional
encoder can be emulated using a one-
dimensional dynamic system. Most of the trellis
codes in use today have limited number of states
(typically less than 128). Almost all of these
codes have been discovered using exhaustive
searches. However, the search for good codes
becomes computationally prohibitive as we
increase the number of states [12].
 In this paper we propose a new method for
generating trellis codes using a recursive
nonlinear equation. We call them Kola codes.
This trellis construction method allows us to
specify the number of states in the trellis as well
as the number of branches emanating from each
node. It also gives us a handle on the code

performance (in terms of the free distance, dfree)
and the code rate of the trellis code. For this
design methodology, the code rate is
independent of the trellis diagram. Our method
can also be used as a constructive technique for
trellis codes with large number of states. The
paper is organized as follows. Section 1 is the
introduction. In section 2 we give the trellis
code construction methodology. The free
distance of the constructed trellis code is
analyzed in section 3. The paper concludes in
section 4.

2 Code construction methodology
As shown in Fig. 1, trellis codes are typically
generated using a memory unit, which basically
is a shift register, and a logic circuit [2, 3]. The
computation of the codeword frame is done
using the logic circuit and the codeword frame is
then shifted out. The code rates are typically
1/2, 1/3, 2/3 etc. because of practical constraints
[1].

 We propose a recursive nonlinear equation to
generate the trellis-coded output for an input bit-
stream. Consider, for example, the following
recursive nonlinear equation

xm = F(xm – 1), (2)

where

F(xm – 1) = a. xm – 1(1 – xm – 1), (3)

and 0 ≤ xm ≤ 1. If the starting value in (3) is x0,
the value after m-fold iteration of the recursive
nonlinear equation is

xm =)(0
)(xF m . (4)

 The method for constructing the trellis code is
as follows. The number of states in the trellis is
a design parameter, and is given by s2 . Thus,
large trellises (if required) can be easily
constructed by increasing the value of s. Each
state takes a value between 0 and 1, and is given
by







≤≤






 −

sis
iSi

22
1

, (5)

where i is an integer such that 0 ≤ i ≤ s2 . Thus,
the states can be visualized as non-overlapping
segments of equal length on the line between 0
and 1. Any number in the interval [0, 1] will
belong to one and only one state, and upon s-
fold iteration of the recursive equation given in
(2) will make a transition to some other state.
The iterations given by (3) can be used to carry
out state transitions. The encoder can, therefore,
be represented using a trellis diagram with

s2 states.
 In order to carry out encoding, the input
sequence is first segmented into frames of length
k. Let the decimal value of the input frame (of
size k bits) be D, where D is an integer such that
0 ≤ D ≤ k2 – 1. We start with an initial state, S0.
The encoder maps the initial state to the next
state obtained after D-fold iteration as given in
(4), i.e.,

)(0
)(SFS D

D = . (6)

 Every state transition (the branch connecting
two nodes in the trellis) has an output vector (n-
tuple) associated with the transition. Since there
are exactly 2k branches emanating from a single
node, the output vectors can be picked from any
appropriate (n, k, d) block code, where d is the
minimum distance of the code [13]. The
encoding procedure is very simple. Given any
state, for a certain input information frame, a
state transition occurs as per (6). A state
transition corresponds to moving along a branch
in the trellis diagram. The output codeword
frame is the n-tuple associated with the branch.
Thus, the recursive nonlinear equation can be
used to generate a trellis diagram having s2
states, with every node having k2 branches
emanating from it. We will call this class of
codes: Kola (n, k, s) codes. If the total number
of states (s2) is greater than the total number of
branches emanating from each node (k2), it is
possible to design a trellis that does not have
parallel branches.

 There can be several choices of the recursive
nonlinear equation given in (3). The condition
that the recursive equation must satisfy is that it
should visit all the s2 states with equal
frequency. Thus, a finite state machine with k2
states can also be used.
 Next, let

s = k + r, (7)

where r is an integer such that r << k < s. The
number of ways to choose from the s2 states in
order to assign the k2 branches is given by

N
)!22)(!2(

!2
2

2
2
2

krkk

rk

k

rk

k

s

−
=








=








= +

++

 (8)

Using the Stirling’s approximation,
p!≈ ppepp −π2 for large p, and some
algebraic manipulations, (8) can be simplified to

N >
()()

()()

k

r

r

r

r
2

12

2

12

2
2
1















−π −
. (9)

 As we increase the value of k, the number of
choices available for assigning the branches
emanating from a node grows approximately as
~

k2α , where 1>α . This gives us more
flexibility for designing good Kola codes for
large values of k. This is important because in
order to obtain good codes with code rates close
to unity, we will require block codes with large
values of n and k [12].

3 Free distance of the trellis codes
We will now estimate the free distance, dfree, of
the Kola (n, k, s) codes obtained using the
proposed constructive technique. dfree represents
the minimum distance between arbitrarily long
(possibly infinite) encoded sequences and
determines the error correcting capability of the
trellis code [3]. Let the length of an error event,
L, be the number of time instances after which a
path in the trellis diverges from and then merges
back to a reference path. Since each outgoing
branch from a node is labeled with one of the
codewords of an (n, k, d) block code, in case

there are parallel transitions, the free distance of
the trellis code is given by

dfree ≥ d, L = 1. (10)

 Next, consider the case where no parallel
transitions occur. We make an assumption that
the states generated by the recursive nonlinear
equation given by (2) are equally probable. In
this case, the probability that a path in the trellis
diverges from and merges back to the reference
path after L time instances is given by (i.e., the
probability of an error event of length L)

PL = 















−






 −

−

s

kL

s

k

k 2
2

2
21

2
11

)2(

, L ≥ 2. (11)

 The first term on the right hand side represents
the probability of a path diverging from the
reference path, the second term corresponds to
the probability of not merging back to the
reference path for (L – 2) time instances, and the
last term is the probability of the path merging
back to the reference path. The dfree of the trellis
code corresponding to the length of error event,
L, can be lower-bounded as

dfree ≥ Ld, L ≥ 2. (12)

 The expected value of dfree for the case where
no parallel transitions occur is lower bounded by

()Ldd
L

s

kL

s

k

kfree ∑
∞

=

−

















−






 −≥

2

)2(

2
2

2
21

2
11 . (13)

Substituting x = k−2 and y = ()ks−−2 , (13) can be
written as

() 







−−≥ ∑

∞

=

−

2

2)1()1(
L

L
free yLydxd

() 







−+−−= ∑ ∑

∞

=

∞

=

−−

1 1

11)1()1()1(
L L

LL yyLydx

()()12)1(−− +−= yyydx . (14)

Under the assumption that x << 1 (i.e., for a
large value of k), (14) can be simplified to

() ()ddyyyydd ks
free

−−−− =>+≥ 2112 . (15)

 Next, let us define the critical rate, Rc, as
follows:

n
sRc = . (16)

The critical rate can be varied from 0 to a very
large number, since both s and n are design
parameters. Using (1), (15) and (16) we can
obtain the following lower-bound:

() dd nRR
free

c −> 2 . (17)

 An important conclusion that can be drawn
from (17) is that for R < Rc, ∞→freed as

∞→n . Also, the freed of the constructed
trellis codes increase exponentially with
increasing n. Since, the number of errors, t, that
can be corrected using a trellis code increases
linearly with dfree [14], the average residual error
probability 0→eP as ∞→n . From (16) we
observe that if s ≥ n, Rc ≥ 1 > R. Therefore the
condition s ≥ n will guarantee trellis codes with
large freed for sufficiently large n.
 Suppose the (n, k, d) code, whose codewords
are mapped onto the outgoing branches from the
node of a trellis, is a linear block code. The
Singleton bound for a linear (n, k, d) block code
satisfies [13]

d ≤ n – k + 1. (18)

Using (1) and (18), we eliminate n from (17) to
obtain

() ()
ddd R

dRR
nRR

free

c
c








−
−

−
− ≥> 1

1

22

() ()dd d
d

R
RR

R

c
1

1
1 22 −

−







−
−

== η , (19)

where, the rate efficiency, Rη , is defined as









−
−

=
R
RRc

R 1
η . (20)

 To illustrate the trellis code construction
methodology, lets take the following example.
Let the (4, 3, 2) cyclic code be the linear block
code whose codewords are to be associated with
the branches emanating from the nodes in the
trellis. The generator matrix of this code is given
by [12]

G =
















1100
0110
0011

. (21)

 Let us choose s = 5 which gives the total
number of states in the trellis equal to 52 = 32.
Here, n = 4, k = 3, d = 2, R = 3/4 and Rc = 1.25.
We have restricted ourselves to small values of
n, k and s so that the trellis diagram can be
shown comfortably. The trellis constructed
using these parameters is shown in Fig. 2. The
codewords of the (4, 3, 2) cyclic code have been
randomly assigned to the branches of the trellis.
The free distance of this trellis code is dfree = 12.
We compare our Kola (4, 3, 5) code with some
of the good convolutional codes obtained from
computer searches [12]. It can be seen from Ta.
1 that the Kola (4, 3, 5) code is superior to the
best possible rate 1/3, 32-state convolutional
code in terms of the code rate.

4 Conclusions
We have proposed a new method for
constructing trellis codes with large free
distances, dfree. The proposed method uses a
nonlinear recursive equation to generate the
trellis diagram. The number of states in the
trellis is a design parameter. The free distance
of the trellis code can be increased at the cost of
a larger number of states. However, the code
rate need not be sacrificed in order to increase
the free distance. Thus, the code performance
can be improved at the cost of decoding
complexity.

 The distinct advantages of this method are:
1. The method gives the code-designer the

flexibility to choose the code rate, R (by
choosing n and k). This allows the designer
to control the excess bandwidth requirement.

2. The method gives the code-designer the
flexibility to choose the number of states in
the trellis. This allows the designer to
determine the error correcting capability of
the trellis code.

3. We can construct good trellis codes with
large free distances. Our method is useful in
the sense that it provides a constructive
technique for trellis codes with large number
of states.

 It has been demonstrated that as we increase
the value of k, the number of choices available
for assigning the branches emanating from a
node grows approximately as ~

k2α , where
1>α .

We have defined a new parameter critical rate as

n
sRc = , where s2 is the number of states in the

trellis and n is the codeword length. An
interesting result is that the expected value of the
free distance of the constructed trellis is lower-
bounded as: () dd nRR

free
c −> 2 . Thus, for R < Rc,

∞→freed as ∞→n . Also, the freed of the
constructed trellis codes increase exponentially
with increasing n. Since, the number of errors, t,
that can be corrected using a trellis code
increases linearly with dfree, the average residual
error probability 0→eP as ∞→n .

References:
 [1] R.E. Blahut, Theory and Practice of Error
Control Codes, Addison-WesleyReading,
Massachusetts, 1983.
[2] J.H. van Lint, Introduction to Coding
Theory, Springer-Verlag, Heidelberg, 1999.

[3] R.H. Morelos-Zaragoza, The Art of Error
Correcting, John Wiley and Sons, New York,
NY, 2002.
[4] I.S. Reed and G. Solomon, “Polynomial
codes over certain finite fields,” SIAM J., vol. 8,
pp. 300-304, Jun. 1960.
[5] J. Justesen, “New convolutional code
constructions and a class of of asymptotically
good time varying-codes,” IEEE Trans. Inform.
Theory, vol. IT-19, pp. 220-225, Mar. 1973.
[6] Y. Levy and D.J. Costello, Jr., “An algebraic
approach to constructing convolutional codes
from quasicyclic codes,” DIMACS Ser. Discr.
Math. Theor. Comput. Sci., vol. 14, pp. 189-
198,1993.
[7] J.L. Massy, D.J. Costello, Jr. and J. Justesen,
“Polynomial weights and code constructions,”
IEEE Trans. Inform. Theory, IT-19, pp. 101-
110, Jan. 1973.
[8] R.M. Tanner, “Convolutional codes from
quasicyclic codes: A link between the theories of
block and convolutional codes,” Univ. Calif.,
Tech. Rep., UCSC-CRL-87-21, Nov. 1987.
[9] R. Smarandache, H. Gluesing-Luerssen and
J. Rosenthal, “Construction fo MDS-
convolutional codes,” IEEE Trans. Inform.
Theory, vol. 42, no. 5, pp. 2045 – 2049, Jul.
2001.
[10] Y. Levy and D.J. Costello, Jr., “A
geometric construction procedure for
geometrically uniform trellis codes,” IEEE
Trans. Inform. Theory, vol. 42, no. 5, pp. 1498 –
1513, Sep 1996.
 [11] B. Chen and G.W. Wornell, “Analog Error
Correcting Codes based on Chaotic Dynamical
Systems,” IEEE Trans. Commun., vol. 46, no. 7,
pp. 881-890, Jul. 1998.
[12] R. Bose, Information Theory, Coding and
Cryptography, Tata McGraw-Hill, New Delhi,
2002.
[13] F.J. MacWilliams and N.J. Sloane, The
Theory of Error-Correcting Codes, Amsterdam,
The Neatherlands: North Holland, 1977.

Fig. 1 A shift register encoder that generates a trellis code.

Fig. 2 The trellis diagram for the Kola (4, 3, 5) code, obtained using the parameters n = 4, k = 3, d
= 2, and s = 5 and the recursive function xm = 4. xm – 1(1 – xm – 1).

Tab. 1 Comparison of Kola (4, 3) code with other convolutional codes.
Code No. of states n k R dfree

Rate 1/2
Non-catastrophic

32 10 5 1/2 7

Rate 1/2
Catastrophic

32 10 5 1/2 8

Rate 1/3 32 15 5 1/3 12
Kola (4, 3, 5) code 32 4 3 3/4 12

k k

nn Logic

Codeword
Frame

Information
Frame

ν

