
 

 
How to design Trellis Codes with Large Distance Properties 

 
RANJAN BOSE  

Department of Electrical Engineering 
Indian Institute of Technology, Hauz Khas, New Delhi 110016 INDIA 

 http://paniit.iitd.ac.in/~rbose  
 
 

Abstract: - We present a novel method for constructing trellis codes, based on recursive nonlinear 
equations.  Using this method, trellis codes having good code rates (R = k/n) can be constructed.  At the 
same time, the method allows the code-designer to construct a trellis with a large free distance, dfree, at the 
cost of a larger number of states in the trellis. It has been shown in this paper that for the code rate, R, less 
than a critical rate, Rc, the free distance can be made as large as desired for large n.  This design 
methodology provides the freedom to play with the code performance and the code rate of the trellis code. 
Using this method, a rate 3/4 trellis code has been constructed with dfree = 12. 
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1 Introduction 
Convolutional codes and other trellis codes can 
be conveniently described using a trellis [1, 2].  
A trellis is a graph whose nodes are in a 
rectangular grid, semi-infinite to the right.  The 
number of nodes in each column is fixed, and 
corresponds to the states in the trellis diagram.  
The code rate of a trellis code reflects the 
fraction of the codeword that consists of the 
information symbols, and is defined as 
 

n
kR = ,                 (1) 

 
where k is the information length (prior to 
coding) and n is the codeword length (after 
encoding).  The free distance, dfree, of a tree code 
is the smallest Hamming distance between any 
two distinct code sequences [2, 3]. 
 
   Trellis codes are typically constructed using a 
shift register and a logic circuit, as shown in Fig. 
1.  The constraint length, ν, is an important 
descriptor of a trellis code.  For a binary trellis 
code, the number of states in the trellis is given 
by ν2 .  Because of practical consideration, 
practical trellis codes use small integer values of 
n and k (frequently, k = 1).  Therefore, it is 

difficult to design a practical trellis code with 
code rate close to unity, as is possible for block 
codes (such as a Reed-Solomon code [4]).   
   Several authors have explored the connection 
between quasi-cyclic codes and convolutional 
codes [5-8].  The construction of MDS 
convolutional codes is discussed in [9] where 
again the connection between quasi-cyclic codes 
and convolutional codes is exploited.  A code 
construction procedure for geometrically 
uniform trellis codes has been proposed in [10].  
Analog error correcting codes based on chaotic 
dynamical systems have been studied in [11] 
where the authors mention that a convolutional 
encoder can be emulated using a one-
dimensional dynamic system.  Most of the trellis 
codes in use today have limited number of states 
(typically less than 128).  Almost all of these 
codes have been discovered using exhaustive 
searches.  However, the search for good codes 
becomes computationally prohibitive as we 
increase the number of states [12].   
   In this paper we propose a new method for 
generating trellis codes using a recursive 
nonlinear equation. We call them Kola codes.  
This trellis construction method allows us to 
specify the number of states in the trellis as well 
as the number of branches emanating from each 
node.  It also gives us a handle on the code 



 

performance (in terms of the free distance, dfree) 
and the code rate of the trellis code.  For this 
design methodology, the code rate is 
independent of the trellis diagram. Our method 
can also be used as a constructive technique for 
trellis codes with large number of states.  The 
paper is organized as follows.  Section 1 is the 
introduction.  In section 2 we give the trellis 
code construction methodology.  The free 
distance of the constructed trellis code is 
analyzed in section 3.  The paper concludes in 
section 4. 
 
 
2 Code construction methodology 
As shown in Fig. 1, trellis codes are typically 
generated using a memory unit, which basically 
is a shift register, and a logic circuit [2, 3].  The 
computation of the codeword frame is done 
using the logic circuit and the codeword frame is 
then shifted out.  The code rates are typically 
1/2, 1/3, 2/3 etc. because of practical constraints 
[1]. 
 
   We propose a recursive nonlinear equation to 
generate the trellis-coded output for an input bit-
stream.  Consider, for example, the following 
recursive nonlinear equation 
 

xm = F(xm – 1),    (2) 
 
where 
 

F(xm – 1) = a. xm – 1(1 – xm – 1),   (3) 
 
and 0 ≤ xm ≤ 1.  If the starting value in (3) is x0, 
the value after m-fold iteration of the recursive 
nonlinear equation is  
 

xm = )( 0
)( xF m .    (4) 

 
   The method for constructing the trellis code is 
as follows.  The number of states in the trellis is 
a design parameter, and is given by s2 .  Thus, 
large trellises (if required) can be easily 
constructed by increasing the value of s.  Each 
state takes a value between 0 and 1, and is given 
by 
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where i is an integer such that 0 ≤ i ≤ s2 .  Thus, 
the states can be visualized as non-overlapping 
segments of equal length on the line between 0 
and 1.  Any number in the interval [0, 1] will 
belong to one and only one state, and upon s-
fold iteration of the recursive equation given in 
(2) will make a transition to some other state.  
The iterations given by (3) can be used to carry 
out state transitions.  The encoder can, therefore, 
be represented using a trellis diagram with 

s2 states. 
   In order to carry out encoding, the input 
sequence is first segmented into frames of length 
k. Let the decimal value of the input frame (of 
size k bits) be D, where D is an integer such that 
0 ≤ D ≤ k2 – 1.  We start with an initial state, S0.  
The encoder maps the initial state to the next 
state obtained after D-fold iteration as given in 
(4), i.e., 
 

)( 0
)( SFS D

D = .   (6) 
 
   Every state transition (the branch connecting 
two nodes in the trellis) has an output vector (n-
tuple) associated with the transition.  Since there 
are exactly 2k branches emanating from a single 
node, the output vectors can be picked from any 
appropriate (n, k, d) block code, where d is the 
minimum distance of the code [13].  The 
encoding procedure is very simple. Given any 
state, for a certain input information frame, a 
state transition occurs as per (6).  A state 
transition corresponds to moving along a branch 
in the trellis diagram.  The output codeword 
frame is the n-tuple associated with the branch.  
Thus, the recursive nonlinear equation can be 
used to generate a trellis diagram having s2  
states, with every node having k2  branches 
emanating from it.  We will call this class of 
codes: Kola (n, k, s) codes.  If the total number 
of states ( s2 ) is greater than the total number of 
branches emanating from each node ( k2 ), it is 
possible to design a trellis that does not have 
parallel branches.   



 

   There can be several choices of the recursive 
nonlinear equation given in (3).  The condition 
that the recursive equation must satisfy is that it 
should visit all the s2  states with equal 
frequency.  Thus, a finite state machine with k2  
states can also be used. 
   Next, let 
 

s = k + r,   (7) 
 
where r is an integer such that r << k < s.  The 
number of ways to choose from the s2  states in 
order to assign the k2  branches is given by  
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Using the Stirling’s approximation, 
p!≈ ppepp −π2  for large p, and some 
algebraic manipulations, (8) can be simplified to 
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   As we increase the value of k, the number of 
choices available for assigning the branches 
emanating from a node grows approximately as 
~ 

k2α , where 1>α .   This gives us more 
flexibility for designing good Kola codes for 
large values of k.  This is important because in 
order to obtain good codes with code rates close 
to unity, we will require block codes with large 
values of n and k [12]. 
 
 
3 Free distance of the trellis codes 
We will now estimate the free distance, dfree, of 
the Kola (n, k, s) codes obtained using the 
proposed constructive technique.  dfree represents 
the minimum distance between arbitrarily long 
(possibly infinite) encoded sequences and 
determines the error correcting capability of the 
trellis code [3].  Let the length of an error event, 
L, be the number of time instances after which a 
path in the trellis diverges from and then merges 
back to a reference path.  Since each outgoing 
branch from a node is labeled with one of the 
codewords of an (n, k, d) block code, in case 

there are parallel transitions, the free distance of 
the trellis code is given by 
 

dfree ≥ d,  L = 1.  (10) 
 
   Next, consider the case where no parallel 
transitions occur.  We make an assumption that 
the states generated by the recursive nonlinear 
equation given by (2) are equally probable.  In 
this case, the probability that a path in the trellis 
diverges from and merges back to the reference 
path after L time instances is given by (i.e., the 
probability of an error event of length L) 
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   The first term on the right hand side represents 
the probability of a path diverging from the 
reference path, the second term corresponds to 
the probability of not merging back to the 
reference path for (L – 2) time instances, and the 
last term is the probability of the path merging 
back to the reference path.  The dfree of the trellis 
code corresponding to the length of error event, 
L, can be lower-bounded as 
 

dfree ≥ Ld,  L ≥ 2.  (12) 
 
   The expected value of dfree for the case where 
no parallel transitions occur is lower bounded by 
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Substituting x = k−2  and y = ( )ks−−2 , (13) can be 
written as 
 

( ) 







−−≥ ∑

∞

=

−

2

2)1()1(
L

L
free yLydxd  

                              

( ) 







−+−−= ∑ ∑

∞

=

∞

=

−−

1 1

11 )1()1()1(
L L

LL yyLydx  

( )( )12)1( −− +−= yyydx .   (14) 
 



 

Under the assumption that x << 1 (i.e., for a 
large value of k), (14) can be simplified to 
 

( ) ( )ddyyyydd ks
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   Next, let us define the critical rate, Rc, as 
follows: 

n
sRc = .   (16) 

 
The critical rate can be varied from 0 to a very 
large number, since both s and n are design 
parameters.  Using (1), (15) and (16) we can 
obtain the following lower-bound: 
 

( ) dd nRR
free

c −> 2 .   (17) 
 
   An important conclusion that can be drawn 
from (17) is that for R < Rc, ∞→freed  as 

∞→n .  Also, the freed  of the constructed 
trellis codes increase exponentially with 
increasing n.  Since, the number of errors, t, that 
can be corrected using a trellis code increases 
linearly with dfree [14], the average residual error 
probability 0→eP  as ∞→n .  From (16) we 
observe that if s ≥ n, Rc ≥ 1 > R.  Therefore the 
condition s ≥ n will guarantee trellis codes with 
large freed  for sufficiently large n. 
   Suppose the (n, k, d) code, whose codewords 
are mapped onto the outgoing branches from the 
node of a trellis, is a linear block code. The 
Singleton bound for a linear (n, k, d) block code 
satisfies [13] 
 

d ≤ n – k + 1.    (18) 
 
Using (1) and (18), we eliminate n from (17) to 
obtain 
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where, the rate efficiency, Rη , is defined as 
 









−
−

=
R
RRc

R 1
η .   (20) 

 
   To illustrate the trellis code construction 
methodology, lets take the following example.  
Let the (4, 3, 2) cyclic code be the linear block 
code whose codewords are to be associated with 
the branches emanating from the nodes in the 
trellis. The generator matrix of this code is given 
by [12] 
 

G = 

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   Let us choose s = 5 which gives the total 
number of states in the trellis equal to 52  = 32.  
Here, n = 4, k = 3, d = 2, R = 3/4 and Rc = 1.25.  
We have restricted ourselves to small values of 
n, k and s so that the trellis diagram can be 
shown comfortably.  The trellis constructed 
using these parameters is shown in Fig. 2.  The 
codewords of the (4, 3, 2) cyclic code have been 
randomly assigned to the branches of the trellis.  
The free distance of this trellis code is dfree = 12.  
We compare our Kola (4, 3, 5) code with some 
of the good convolutional codes obtained from 
computer searches [12].  It can be seen from Ta. 
1 that the Kola (4, 3, 5) code is superior to the 
best possible rate 1/3, 32-state convolutional 
code in terms of the code rate. 
 
 
4 Conclusions 
We have proposed a new method for 
constructing trellis codes with large free 
distances, dfree. The proposed method uses a 
nonlinear recursive equation to generate the 
trellis diagram.  The number of states in the 
trellis is a design parameter.  The free distance 
of the trellis code can be increased at the cost of 
a larger number of states.  However, the code 
rate need not be sacrificed in order to increase 
the free distance.  Thus, the code performance 
can be improved at the cost of decoding 
complexity. 



 

   The distinct advantages of this method are: 
1. The method gives the code-designer the 

flexibility to choose the code rate, R (by 
choosing n and k).  This allows the designer 
to control the excess bandwidth requirement. 

2. The method gives the code-designer the 
flexibility to choose the number of states in 
the trellis.  This allows the designer to 
determine the error correcting capability of 
the trellis code. 

3. We can construct good trellis codes with 
large free distances.  Our method is useful in 
the sense that it provides a constructive 
technique for trellis codes with large number 
of states. 

 
   It has been demonstrated that as we increase 
the value of k, the number of choices available 
for assigning the branches emanating from a 
node grows approximately as ~ 

k2α , where 
1>α .    

We have defined a new parameter critical rate as 

n
sRc = , where s2  is the number of states in the 

trellis and n is the codeword length.  An 
interesting result is that the expected value of the 
free distance of the constructed trellis is lower-
bounded as: ( ) dd nRR

free
c −> 2 .  Thus, for R < Rc, 

∞→freed  as ∞→n .  Also, the freed  of the 
constructed trellis codes increase exponentially 
with increasing n.  Since, the number of errors, t, 
that can be corrected using a trellis code 
increases linearly with dfree, the average residual 
error probability 0→eP  as ∞→n .   
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Fig. 1 A shift register encoder that generates a trellis code. 

 
Fig. 2 The trellis diagram for the Kola (4, 3, 5) code, obtained using the parameters n = 4, k = 3, d 
= 2, and s = 5 and the recursive function xm = 4. xm – 1(1 – xm – 1). 
 
 
 

Tab. 1  Comparison of Kola (4, 3) code with other convolutional codes. 
Code No. of states n k R dfree 

Rate 1/2  
Non-catastrophic 

32 10 5 1/2 7 

Rate 1/2  
Catastrophic 

32 10 5 1/2 8 

Rate 1/3  32 15 5 1/3 12 
Kola (4, 3, 5) code 32 4 3 3/4 12 
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