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Abtract: The construction of fuzzy rule-based classification systems with both good generalization ability
and interpretability is a chalenging issue. The paper aims to present a novel framework for the realization
of these important (and many times conflicting) goals simultaneously. The generalization performance
is obtained with the adaptation of Support Vector algorithms for the identification of a Support Vector
Fuzzy Inference (SVFI) system. The SVFI is a fuzzy inference system that implements the Support
Vector network inference and inherits from it the robust learning potential. The construction of the
SVFI is based on the algorithms presented in [6]. The contribution of the paper is the development of
algorithms for the construction of interpretable rule systems on top of the SVFI system. However, the
SVFI rules usually lack interpretability. For this reason, the accurate set of rules is approximated with
a simpler interpretable fuzzy system that can present insight to the more important aspects of the data.
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1 Introduction

Recently, another approach to the fuzzy identification

problem based on Support Vector Learning has been

developed [6, 7]. This approach aims to offer a robust

framework for fuzzy systems that are able to generalize

effectively [3]. The technique of Support Vector Ma-

chine (SVM) grounded on the Statistical Learning The-

ory of Vapnik [1] has received recently a lot of attention

by researchers since it demonstrated success in many

difficult application domains [2, 12]. The SVM is an

approximate implementation of the structural risk min-

imization inductive principle that aims at minimizing

an upper bound on the generalization error of a model,

rather the usual minimization of the mean-square error

over the training set accomplished with most training

algorithms. We utilize the algorithms of [6] for the con-

struction of a Support Vector Fuzzy Inference (SVFI)

system.

The resulting fuzzy system implements accurately

the SVM inference and thus it is generally quite effec-

tive. But, the interpretation of its rules by the human

expert is difficult, since the rules are defined in terms of

the proximity to support vectors, a concept that usually

does not provide an intuitive information to the human

expert.

The major contribution of the paper is the presen-

tation of a simple but effective set of algorithms for the

construction of an approximate interpretable fuzzy sys-

tem from the accurate SVM-based one. The advantages

of the presented approach can be summarized to:

1. The rules are expressed with domain specific fuzzy

sets and thus they can directly provide intuition

to the human expert.

2. It has generally much smaller number of rules from

its ”base” SVFI system and each such rule involves

usually a small subset of the input features. To the



contrary at the SVFI rules every rule consists of

the conjunction of clauses, with one clause of the

form CloseTo for every feature dimension.

3. The approximation accuracy and the complexity

of the interpretable set of rules can be traded off

dynamically by adjusting a set of thresholds.

We should note however that the implementation of

the system requires an a priori characterization of the

interpretable fuzzy sets for the input variables of inter-

est. Thus, we confront application domains for which

interpretable partitions for the input variables can be

defined a priori as for example most gene expression

analysis tasks. Since for most features we can define

approximately interpretable fuzzy sets, our method can

be applied in order to extract possibly interesting, sim-

ple and interpretable rules.

The paper proceeds as follows: Section 2 reviews the

Support Vector Fuzzy Inference system and the corre-

sponding algorithms for fuzzy rule construction from

the trained SVMs. This presentation is based on the

work of [6]. Section 3 concerns the main contribution of

the paper, i.e. the derivation of the interpretable fuzzy

rules from the Support Vector Fuzzy Inference rules.

The results section (i.e. Section 4) presents applications

of the techniques, which deal with both synthetically

generated data and real data sets. Finally, section 5

concludes the work of the paper.

2 Support Vector Fuzzy Infer-

ence (SVFI) learning

This section reviews the framework for Support Vector

Fuzzy Inference (SVFI) proposed in [6]. This method

provides a solid foundation for obtaining generalization

and over-fitting prevention ability. The main contri-

bution of the current work is the construction of a re-

duced set of interpretable rules from the SVFI that pin-

point many interesting aspects of the data set in easily

conceivable representation for the human expert. The

corresponding interpretable rule set does not claim to

maximize the classification accuracy. Its purpose is to

discover important aspects of the dataset and perhaps

to help in elaborating domain specific knowledge. The

rules discussed at the current section are expressed in

terms of the Support Vectors and implement accurately

the SVM inference. Thus, the presented methodology

by utilizing concurrently two sets of rules offers both

interpretability and accuracy.

We proceed by describing the rules that correspond

directly to the SV inference, referred to as the SV-

Inference rules. The SV-Inference rules are extracted by

utilizing the algorithms of Chen & Wang [6]. Since the

presented interpretable rule is constructed ”on-top” of

the SVFI system we present a self-contained description

of these algorithms in order to preserve the continuity

of the presentation and to clarify the close coupling of

the two systems (i.e. the SVFI and the interpretable

rule systems).

The general form of the Support Vector Fuzzy In-

ference (SVFI) rules is:

Rule k: if P k
1

and P k
2

and . . . P k
N then ck

where P k
i , i = 1, . . . , N are fuzzy clauses, of the form

xi is CloseToSV(k, i),

that test the membership of the ith ”coordinate”

xi of the input vector x = [x1, . . . , xN ] at the ith

fuzzy set of the kth SV, CloseToSV(k, i). The later

sets CloseToSV(k, i) fuzzify the numerical distance of

the xi input coordinate to the xk
i coordinate of the

kth support vector. A Gaussian function of the form:

µk
i (xi) = exp(− 1

2

(

xk
i −xi

σk

)2

), computes the membership

by quantifying the proximity of the input value com-

ponent xi to the value xk
i of the ith component of the

support vector SVk. Also, the parameters ck are real

constants, i.e. ck ∈ <. We choose product as the fuzzy

conjunction operator, addition for fuzzy rule aggrega-

tion and Center Of Area (COA) defuzzification. The

resulting model becomes a special case of Takagi-Sugeno

(TS) fuzzy model [13].

The input-output mapping F′ that the SVFI model

performs and the decision function for classification

problems F(x) can be expressed as

F′(x) =

∑M

k=1
ck

∏N

i=1
µk

i (xi)
∑M

k=1

∏N

i=1
µk

i (xi)
=

M
∑

k=1

ckRk(x) (1)

F(x) = sgn{F′(x)} (2)

where x = [x1, . . . , xN ]T ∈ <N is the input, M is the

number of rules, N is the number of conjunctive clauses

of the kth rule which is equal to the dimensionality of

the input vector x and µk
i (xi) computes the membership



of the input variable xi in the fuzzy set CloseToSV(k,

i). The term contributed by rule k to the numerator of

Equation 1 is ck ·
∏N

i=1
µi

k(xi), and the kth rule’s relative

strength, Rk(x), with which this rule is involved at the

decision for input vector x is:

Rk(x) =

∏N

i=1
µk

i (xi)
∑M

k=1
(
∏N

i=1
µk

i (xi))
(3)

=
K

′

(x, zk)

A

=
exp

(

−1

2
‖x−zk

σk
‖2

)

A

where zk = [z1

k, z2

k, . . . , zN
k ]T ∈ RN controls the

location parameters (i.e. the Gaussian centers) of

µk
i , k = 1, . . . , M , i = 1, . . . , N . The denominator

∑M

k=1
(
∏N

i=1
µk

i (xi)) attains a constant value denoted by

A. Since the denominator is constant it does not affect

the classification decision and thus we consider equiva-

lent problems, already scaled properly. Therefore, at the

expansion of equation 4 (presented below) we consider

only the numerator K ′(x, zk). It is now evident that

K ′(x, zk) has the general form of the Gaussian kernel

that is used to implement the Radial-Basis SVM.

The decision rule of the output of the fuzzy system of

equation 1 can be expressed in terms of kernel functions

as:

F(x) = sgn{

M
∑

k=1

ckK ′(x, zk)} (4)

The kernel K ′ is a translation invariant kernel de-

fined as K ′(x, zk) =
∏N

i=1
µk

i (xi − zk
i ) and each µk

i

membership function is of the familiar one-dimensional

Gaussian type. In order to implement K ′(x, zk) we

use scaled and shifted Gaussians, therefore K(x, zk) =

K ′(‖x − zk‖), where the location, of the Gaussians are

specified with the location vector zk.

The SV learning algorithm constructs a fuzzy sys-

tem with N inputs and M number of rules (one rule for

every SV). The number of rules M is derived after the

solution to the SVM quadratic programming problem.

The M fuzzy rules can be parameterized with a set

of location parameters {z1, . . . , zM} ∈ <N for the Gaus-

sian centers that determine the membership functions

of the if-part fuzzy rules, and a set of real numbers

({c0, . . . , cN} ∈ <) for the constants of the then-part

of the fuzzy rules.

3 Interpretable rules

Linguistic rule extraction is a very important issue

within Knowledge-Based Neurocomputing. Support

Vector Machines as well as the equivalent SVFI system

interpolate relatively easily large sets of data and pro-

vide a means for effective generalization. However, the

SVFI approach has the following basic drawbacks:

• The SVFI rules are formulated with fuzzy sets de-

fined in terms of the feature coordinates of the

support vectors (i.e. the CloseToSV() fuzzy sets).

These later sets usually do not have a particular

meaning to the human expert.

• For problems with large input feature space di-

mensionality N the obtained rules involve N con-

junctive clauses and it is very difficult to compre-

hend them intuitively.

• When the number of support vectors becomes

large the corresponding large SVFI rule base im-

poses additional interpretability problems.

Therefore, the derivation of interpretable and com-

prehensible to the human expert fuzzy rules from the

SVFI rules is a very important task since it offers the

potentiality for a readable and intuitive knowledge rep-

resentation. The presented framework constructs rules

that are expressed in terms of concepts that the human

expert can understand easily.

We perform an Interpretable Fuzzy Set (IFS) ap-

proximation of the SVFI system with one based on a

priori specified interpretable fuzzy sets. Specifically, for

each feature dimension f the domain expert can de-

fine a set of interpretable fuzzy sets that are meaning-

ful at the particular application domain. For example

at a medical diagnosis application, for the ArterialPres-

sure feature, fuzzy sets such as VeryLow, Low, Medium,

High, VeryHigh can offer direct interpretation and in-

tuition. Clearly, according to the application domain

of interest, we have to decide on the fuzzy set types

for the interpretable fuzzy sets (e.g. triangle shaped,

trapezoids, Gaussian etc.) and on their names (proper

names improve the readability of the extracted inter-

pretable rules). A graphical Java interface allows the

user to define conveniently these characteristics of the

fuzzy system.

After the explicit definition of domain specific fuzzy

sets the task of generating fuzzy rules that are expressed



in terms of these sets from the SVFI system is com-

pletely computational and proceeds without the inter-

vention of the human expert.

For a support vector sv with scalar value svf , svf ∈

<, for its feature dimension f , the degree of membership

µIFSf,i
(svf ), of svf at every Interpretable Fuzzy Set

IFSf,i of feature f , is evaluated. Since the emphasis is

on obtaining a small set of interpretable and comprehen-

sible rules, for each feature f , we keep as a candidate for

clause generation only the interpretable fuzzy set with

the maximum membership, denoting it as IFSf,max.

We consider the case that svf is ”sufficiently within”

the interpretable fuzzy set IFSf,max of feature f , i.e.

µIFSf,max
(svf ) > β, where β ∈ < is a threshold pa-

rameter. At this case, for each CloseTo(IFSf,max, svf )

fuzzy clause we create an approximate interpretable

fuzzy clause in terms of IFSf,max. The threshold pa-

rameter β determines the number and the quality of

the derived rules. Clearly, with larger thresholds we

construct fewer rules but of better quality.

The membership values µIFSf,max
(svf ) are used to

compute a measure of the accuracy with which the orig-

inal SVFI rule is approximated. We define a Support

Vector Rule Similarity (SVRS) parameter for a possible

interpretable rule r extracted from the support vector

sv as:

SV RSr =
N
∏

f=1

µIFSf,max
(svf ) (5)

where N is the dimensionality of sv. Thus, the SV RSr

parameter for a rule r is defined as a product of the

similarities of all its clauses to the corresponding SVFI

clauses (i.e. the parameters µIFSf
(svf )). The product

is justified by the conjunctive structure of the rules.

The construction of the ”then” part and therefore

of the class label of the rules is straightforward and de-

pends on the sign of the cr parameters that constitute

the ”then” part of the SVFI rules. The cr parameters

are computed with the SVFI algorithm presented in

Section 2. However, a bit more technical is the extrac-

tion of information for the strength of each rule from

the SVFI training results. To accomplish this, we de-

tect the minimum and maximum values of the values

cr = yi · αi, cr ∈ <. Clearly, their range depends on

many factors, e.g. the specific problem, the particular

training set, the RBF-SVM parameters C (complexity

regularization parameter) and σ (spreading of Gaussian

centers parameter) etc. Although, in absolute terms the

cr values do not have a particular meaning, their rela-

tive magnitude indicates the ”weight” (or significance)

of the corresponding rule. Therefore, an additional rule

pruning step can be performed by avoiding to consider

those SVFI rules that do not contribute significantly

either for the positive or the negative class. As a par-

ticular example one rule with cr = 0.8 is a ”weak” one

if the class range is [−31.7, 35.2] since it affects slightly

the classification but the same rule is a ”strong” in favor

for the positive class one if the class range is [−0.8, 0.9].

Thus, we detect the minimum and maximum values of

the class range (i.e. values cr) and we normalize this

range to [−1.0, 1.0] in order to obtain effectively the

”weight” wr of each rule r. The normalization unbiases

the weight parameter from the range of cr values. The

”weight” parameter corresponds to the strength of the

corresponding rule at the SVFI system.

Recapitulating, the weight parameter wr quantifies

the classification strength of the SVFI rule, while the

formely described SV RSr the accuracy of its inter-

pretable rule ”version”. Thus, the multiplication of the

weight parameter wr with the Support Vector Rule Sim-

ilarity parameter, SV RSr, adjusts the weight of the in-

terpretable rule considering also the accuracy of the in-

terpretable rule in representing the original SVFI rule.

We denote the combined quality measure for each inter-

pretable fuzzy rule r as Significancer, i.e.

Significancer = wr · SV RSr (6)

A useful concept, especially for high dimensional

datasets, for the reduction of the syntactic complexity

of the interpretable rules is the one of the default inter-

pretable fuzzy set. At the frequent case in many appli-

cations where a variable most often attains the highest

memberships to a particular fuzzy set, that fuzzy set

can be treated as the default interpretable fuzzy set.

Clauses expressed in terms of the default interpretable

fuzzy sets are not displayed explicitly at the represen-

tation of the interpretable fuzzy rules. For example,

since most genes at a gene expression experiment are

not affected significantly by the experiment’s condition,

the linguistic variable ”Unchanged” can be implicitly

assumed for all genes not appearing at the clauses of

an interpretable rule. The concept of the default inter-

pretable fuzzy set allows the construction of readable

rules that involve a small number of fuzzy clauses at

their antecedent part.

Frequently in practice we can specify easily inter-

pretable fuzzy sets for many input feature dimensions.



For example, at a gene expression analysis experiment

with normalized data where −1(+1) is the maximum

underexpression (overexpression) and the value 0 (zero)

corresponds to absolutely unaffected genes, we can spec-

ify a variety of fuzzy sets according to our apriori knowl-

edge. However, there can exist also features for which

interpretable fuzzy sets, cannot be a priori specified. At

these cases we can simply ignore the corresponding fea-

ture dimensions at the rule extraction. Alternatively,

for those features, data-driven interpretable fuzzy rule

extraction algorithms like the hierarchical fuzzy parti-

tioning algorithm proposed in [14] can be utilized.

Below we recapitulate the interpretable fuzzy

system construction algorithm in pseudo-code for-

mat. We recall that the main idea is to replace

each of the SVFI clauses CloseToSV(xf , zrf
) by

FuzzyLinguisticVariable(xf , zrf
) if the feature dimen-

sion f of the support vector zr (i.e. zrf
) attains a

sufficiently high maximum membership µFf,max
(zrf

) at

the FuzzyLinguisticVariable fuzzy set Ff,i.

Algorithm: Extraction of interpretable rules

from the SVFI rules

// Notation:

// zr, zrf
: the location parameter of the rth support

vector

// and the corresponding feature coordinate f of zr

// xf : the input value for the f feature

interpretableClauses = {};

ruleSupport = 1.0;

for all the features f of the support vector zr do

// replace the clause CloseToSV(xf , zrf
) with a possi-

ble interpretable clause

for the interpretable fuzzy set Ff,i of the fth feature

variable that is closest to zrf

(e.g. for the interpretable fuzzy sets HighExpression,

LowExpression a value 0.9 will be closest to the High-

Expression set)

if µFf,i
(zrf

) > β then

// β is the formely described threshold parameter

/* the support vector feature value zrf
attains enough

membership to the interpretable fuzzy set Ff,i, thus

concatenate the new clause */

if Ff,i is not the default fuzzy set then

interpretableClauses = interpretableClauses and

(xf is Ff,i )

(e.g. xf can be a gene named BRC (i.e. Vk ≡ BRC)

and the newly added clause can be: BRC is HighEx-

pression)

// compute a measure of how much the new inter-

pretable rule is supported by the SVM inference rule

ruleSupport = ruleSupport*µFf,i
(zrf

)

endif;

else

/* if even one conjunctive clause cannot have a satis-

factory approximation with an interpretable fuzzy set

(the default set included) the whole Support Vector rule

cannot derive an interpretable rule */

interpretableClauses = {};

return null

end else;

end for;

if interpretableClauses != null)

/* interpretable clauses exist, construct the ”then” part

of the potential interpretable rule that will correspond

to the support vector. This construction proceeds by

first deciding if the possible rule is sufficiently significant

by using the relative magnitude of the Lagrange multi-

plier. For the positive case we derive the ”then” part

as Class = ”Positive” if the corresponding bi = αi · yi is

≥ 0 and Class = ”Negative” at the opposite case. */

4 Results

At this section we demonstrate the potentiality of the

presented interpretable rule extraction algorithms from

the SVFI systems with an example of a multiclass classi-

fication experiment with the UCI Iris standard data set.

Since the SVFI system implements accurately the RBF-

SVM classification decision function, all the results con-

cerning the generalization potential of the RBF-SVM

[12, 1, 8, 4] are valid, and thus we do not elaborate on

them but instead we focus on the results obtained from

the interpretable fuzzy rule extraction subsystem.

4.1 Multi-class classification

The main motivation of our method is to gain insight

at the data by discovering interesting rules. Therefore

the emphasis is not on building a classifier based on the

interpretable rules. However, methods developed from

the SVM machinery for multi-class classification are well

suited for the exraction of multi-class interpretable clas-

sification rules. Specifically, by designing M binary clas-

sifiers we derive rules that distinguish each class from

the rest ones. With these M experiments we can usually

gain much insight at the characteristics of each class.



The one-versus-the-rest approach can be used at the

SVFI inference. This method constructs a set of binary

classifiers f1, . . . , fM , each trained to separate one class

from the rest, and then it combines them by doing the

multi-class classification according to the maximal out-

put before applying the sgn functions; that is, by taking

argmaxj=1,...,M
gj(x), gj(x) =

m
∑

i=1

yiαiK(x, xi)+bj (7)

We utilize the well known Iris database in the pat-

tern recognition literature. This data set contains 3

classes of 50 instances each, where each class refers to a

type of iris plant. One class is linearly separable from

the other two; the latter are NOT linearly separable

from each other. The predicted attribute is the class of

iris plant. The attribute information has as follows: 1.

sepal length in cm, 2. sepal width in cm 3. petal length

in cm 4. petal width in cm and the three classes are: 1.

Iris Setosa, 2. Iris Versicolour, 3. Iris Virginica

The methodology of extracting interpretable rules is

to consider first the case that we use the SVFI that dis-

tinguishes Iris-Setosa from the rest of the two classes

(Iris-Virsinica and Iris-Versicolor) As a consequence we

define a set of rules that distinguish Iris-Setosa from

the rest two classes. Similarly, we extract rules for the

Iris-Virsinica and Iris-Versicolor class.

For each rule we define the rule’s coverage as the

percentage of instances of the predicted class covered

by the rule’s premise i.e,

Rc =
Nci

Nti

(8)

where Nci is the number of covered instances of class Ci

by the rule and Nti is the total number of instances of

class Ci.

Also for each rule we define the rule’s precision that

indicates from the instances that activate the rule’s

premise, the percentage that is of the predicted class

i.e.

Rp =
Ncp

Ntp

(9)

where Ncp is the number of instances of the predicted

class that activate the rule’s premise and Ntp is the total

number of instances that activate the rule’s premise.

Results for IRIS. For the IRIS data set we used three

Gaussian interpretable fuzzy sets for each of the four

features.

The derived rules for the IRIS set are the following:

R1: if petalLength is Small and petalWidth is

Small then class = IrisSetosa, Coverage: 1, Precision:

1

R2: if petalLength is Medium and petalWidth is

Medium then class = IrisVersicolour, Coverage: 1,

Precision: 0.9

R3: if petalLength is Large and petalWidth is Medium

then class = IrisVirsinica, Coverage: 0.1, Precision:

0.9

R4: if petalLength is Medium and petalWidth is Large

then class = IrisVirsinica, Coverage: 0.4, Precision:

0.9

R5: if petalLength is Large and petalWidth is Large

then class = IrisVirsinica, Coverage: 0.5, Precision: 0.9

Although the support vector machine and the corre-

sponding SVFI attain a very high cross-validated leave-

one-out generalization performance near 98% the inter-

pretable rule system has a performance of 95% for the

Iris Setosa class, 85% for the Iris Virsinica and 82% for

the Iris Versicolour. However the resulted rules are very

simple and they own the interpretability property for

which they were designed.

5 Conclusions

The paper has presented a dual approach to the problem

of fuzzy system identification from training examples

that extends the work of [6] by building interpretable

fuzzy-rule systems on top of the SVFI algorithms pro-

posed in [6].

During the first phase, the SVFI framework of [6]

is utilized as a disciplined method for the generation of

fuzzy if-then rules from the training data that is capa-

ble of achieving remarkable generalization performance.

Concerning applications that involve high-dimensional

feature spaces, very important is the fact that the Sup-

port Vector Machine (SVM) can work very effectively

at a high (or even infinite) dimensional feature space.

Since the constructed Support Vector Fuzzy Inference

(SVFI) system mimicks accurately the support vector

machinery it owns all of its generalization efficiency.

However the SVFI system lacks the desired property

of interpretability and cognitive meaning to the human

domain expert. In order to derive also interpretable

rules we have developed a second phase, in which we

extract another set of rules by examining the structure

of the SVFI rules. At this phase we take as an a priori



”bias” an approximate specification of the fuzzy sets

that the human expert considers as relevant to the ap-

plication domain of interest. The derived set of rules

at this stage although is not as powerful as the SVFI

system, can offer very useful insight to the structure

of the data. Indeed, the constructed rules tend to be

meaningful since they are stated in terms of the fuzzy

sets defined by the domain experts. Concise rules that

highlight aspects of the data generation process can be

revealed.
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