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Abstract: In this paper we discuss the development of a computer model for the quantitative analysis of underground flow. Although underground flows are mainly characterised by flow through porous media, combined free/porous regimes are also frequently encountered in sub-surface regions. In this paper we discuss the extension of our model to such combined flow systems and provide an example of the application of the developed software to a case study. As can be expected the resulting software is a sophisticated program whose effective application requires many hours of training and experience. In order to make the software accessible for the general user, who may only have limited experience in mathematical modelling, we describe the incorporation of the present model into a previously developed computer network system. This system has been structured to include an intelligent front-end for complicated hydro-environmental flow modelling and provides on-line assistance for non-expert users at every stage of an application. 
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1  INTRODUCTION

Mathematical analysis of underground flow of viscous fluids has been the subject of extensive research. Therefore a plethora of formulations can be found in  the literature which provide mass and momentum balance equations for the modelling of underground regimes. The main criterion for deciding which one of available mathematical models is best suited for a particular situation is the permeability of the porous domain in which the flow occurs. In cases where the porous domain consists of densely packed particles the small pores between solid sections allow a fluid to seep through whilst the solid matrix carries all of the stresses in the system. 
The most appropriate equation of motion under these circumstances is based on the well known Darcy model which relates pressure drop for flow through a porous region to the flow rate (flux) and physical parameters such as domain permeability and fluid viscosity. In contrast, if the permeability of a porous region is high enough to let the porous regime to be, at least, partially dominated by viscous forces the Brinkman model which includes viscous stresses in the momentum balance for the fluid flow is used.  It can be said that in the Brinkman model the fluid/solid system is effectively regarded as a pseudo-fluid characterised by an assumed ‘effective viscosity’. 

The interface region can be considered to be a boundary layer zone where the fluid flow of two different porous media or a porous medium and a fluid or a porous medium and an impermeable medium adjust to one another ( Vafai and Thiagraga 1987). A specific example can be cited from petroleum reservoirs wherein the oil flow encounters different layers of sand , rock, shale, limestone, etc. Similar situations are encountered in many other cases of practical interest as underground flow and geothermal operations. The Brinkman equation can properly take into account for the boundary layer interaction between free and porous flow or porous flow and impermeable boundary when no-slip boundary condition is important.  Domain discritisation and imposition of boundary conditions also will be discuss in section 2. 
By its nature the Darcy model represents creeping (i.e.  near zero Reynolds number) flow and cannot take into account inertia effects and no-slip wall conditions. On the other hand the determination of effective viscosity in the Brinkman model is not practically possible and in accordance with the published literatures is set equal to fluid viscosity. 

The purpose of the present work is to develop a comprehensive hydrodynamic tool for a wide range of hydro-environmental problems.  Such a general tool is not currently available however in recent years there have been many attempts to create software which can tackle environmental modelling via an integrated approach,(e.g. see P. Pina et al, 2003). 
2 MATHEMATICAL MODEL

The continuity equation representing conservation of matter in all types of flow regimes simulated by the present model is based on the following mass balance equation for incompressible fluids
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Where 
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is the velocity vector.  However, depending on the nature of the flow, i.e. whether it is free or porous and permeability is lower than a given threshold or not a suitable equation of motion representing the conservation of momentum should be used. We consider the following general form
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Where p is the pressure. For 
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 is fluid density and 
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is the identity matrix multiplied by fluid viscosity (
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), equation (2) represents the Darcy model. For 
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is the ‘effective’ viscosity, equation (2) provides the momentum balance relation corresponding to the Brinkman model. In these models when the porous domain is considered to be heterogeneous viscosity/permeability ratio should be written as a row vector with 
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 as its components and multiplied by the identity matrix. 

Finally for 
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is viscosity of a generalised Newtonian fluid, equation (2) yields the Navier-Stokes equation for laminar free flow in the absence of body forces. For a purely Newtonian fluid, where viscosity is constant 
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, the stress term in the operator expression for the free flow can simply be written as 
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. In modelling steady state systems the temporal derivative term in the above definitions vanish.

Combining free flow and Brinkman models does not present any particular mathematical problems and these regimes can simply be simulated conjunctively provided that effective viscosity in the porous region is matched with the fluid viscosity at the interface. However, lack of a second order velocity derivative in the Darcy equation precludes straightforward linking of free and porous equations for this case. A very well established technique for such linking is the use of interface conditions suggested by (Beavers and Joseph, 1967).  Details of the use of this technique for underground flow systems has been reported by (Das and Nassehi, 2003). Momentum transfer between the porous and free flow domains in this method is manipulated by assuming the existence of a slip layer at the interface separating the regions. 

There are a variety of different finite element schemes that can be used for the solution of the governing equations. The finite element scheme used in the present work is based on the continuous penalty technique (Nassehi, 2002). Essentially, this technique is similar to the ‘Lagrange Multiplier Method’ used for the solution of equations subject to a constraint. Here the continuity equation (i.e. the incompressibility condition) is regarded as a constraint for the equation of motion. Therefore instead of solving the governing flow equations as a system of three P.D.E. s the pressure in the components of the equation of motion is replaced by a multiplier (called penalty parameter) times the continuity equation. This gives a more compact set of working equations with components of the velocity as the remaining unknowns. Furthermore, by eliminating the pressure from the equation of motion the basic numerical stability condition for the simulation of incompressible flows, known as the LBB criteria, is also satisfied. The mathematical analysis leading to the development of this criteria for the stable solution of incompressible flow systems is rather obscure (Reddy, 1986). However, it is simply observed that the absence of a pressure term in the incompressible continuity equation can potentially lead to problems during any numerical solution of a  system of P.D.E s with velocity and pressure as the prime unknowns. This is because that the approximations for the velocity and pressure unknowns which appropriately satisfy the equation of motion are not necessarily suitable for the continuity equation which lacks a pressure term. 

In the continuous penalty technique to eliminate the pressure from the governing equations, pressure is expressed in terms of the incompressibility condition  as:
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                                                    (3).

It can be shown that by using a sufficiently large penalty parameter (
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) the incompressibility condition is satisfied (Pittman, 1989). However, insertion of a very large number into the system of governing equations upsets the relative magnitude of the terms in the equation of motion making the system ill-conditioned. To minimise such effects and to maintain the consistency of the terms in the working equations of the scheme it is advantageous to make the penalty parameter proportional to the fluid viscosity as: 
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 is dimensionless and  large enough to generate a sufficiently large 
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After the discretisation (division) of the solution domain into a computational mesh, consisting of finite elements of predetermined geometrical shapes, the prime unknowns in the governing equations are replaced by approximate forms defined within the selected finite elements.  In the weighted residual finite element scheme, used in the present work, these unknowns are replaced by trial function representations, which in the context of a discretised domain are given by low order interpolation polynomials, Nj ,  (Zienkiewicz and Taylor, 1994). A system of weighted residual equations should be derived for each element in the domain. This is obviously not convenient. However, by using an elemental coordinate system rather than the global coordinates the uniformity of the system of equations can be preserved. This is achieved via using isoparametric mapping of elements of the global mesh into a master element where all the calculations are carried out (Zienkiewicz and Taylor, 1994). In addition, a natural coordinate system such as 
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 can be used within the master element to enable the evaluation of all integrals within its domain by Gauss quadrature method (Gerald and Wheatley, 1984). 

Repeated application of the above procedure to each element in the computational mesh leads to the construction of elemental weighted residual equations written in matrix notations. Subsequent assembly of these equations over the common nodes between elements provides a system of global algebraic equations. The flux terms along all interior element boundaries cancel out each other leaving only the boundary integrals along the exterior boundaries of the solution domain. These terms should then be treated via the imposition of boundary conditions to obtain a determinate set of equations. At the inlet the velocity components are known and hence equations corresponding to the nodes along this line are dropped from the global set. Imposition of all boundary conditions into the assembled set of working equations renders the global system determinate which is then solved using a solution technique such as the Gussian elimination method. A computationally efficient version of this method which relies on bit by bit reducing of the global system to upper triangular form according to an advancing front is used in the present work   (Irons, 1970).  

Computer implementation of the entire scheme is via a user-friendly network for multi-user applications. The present paper includes a brief description of this system.   

3 COMPUTER IMPLEMENTATION

To achieve the goals of flexibility, practicality, speed, multi-user capability and computing economy the use of the described model is based on its implementation via an Information Processing Tool. The detail of the basic system has been previously published (N.Keshavarzi-Roonizi et al, 2004). In this work we have extended this system and developed a new architecture in order to make it suitable for porous and combined free/porous problems. The IT tool consists of three modules. 

· Front-end, provides a network node for communication between the users and the software. Quantitative results generated by the model are treated in a back-end module and the final result is provided in clearly tabulated or graphical formats. A log is kept by the system which records the particulars of the application for future comparisons and evaluation of the efficiency of the solution generated for a given problem.  The front end will guide the user towards inserting appropriate input data.  The system compares given permeability of the porous domain and selects the most suitable mathematical model to carry out computations. The front end facilitates data handling whilst monitoring the suitability and relevance of the data inserted by the users to activate the data generator (simulation) module.
· Data-generator is a systematic library of various modelling software written in FORTRAN and symbolic programming as well as genetic algorithms , (Passone, 2002; Mokhtarzadeh, 1998; Das, 2001)to solve the model equations. The front-end interface feeds the input data to the modelling sections initiating numerical computations. At the end of the computations the simulation results are passed to the back-end module for further processing required before presentation of the answers. 





























Fig. 1 Schematic diagram of the IT system

· Back-end, provides a network node for the import and processing of the data (i.e. results, answers, evaluations) generated by the data generator module. The processed results are logged and returned to a window in the front-end for the utilization by the users. It should be noted that the simulations results obtained via the data-generator mainly consist of large amounts of numerical data and hence the back–end module re-organizes them as pre-formatted tables or graphical out put.  The back-end module can also communicate directly with the front-end at the preliminary stages of an application (i.e. problem simulation). For example, it is designed to provide answers regarding the validity of a given input on the basis of its self-consistency or logical status. This feature is mainly utilized to guide the untrained user to obtain required information from the system with ease and efficiency (N.Keshavarzi-Roonizi et al, 2004). Figure 1 shows the Brinkman model chosen by the user.
4 SAMPLE RESULT

To demonstrate the application of the present model we have considered simulation of a combined free/porous flow regime through a domain as shown in figure 2. In this work the dimensionless version of the governing equation has been used and therefore permeability is represented by Darcy parameter that is Dimensionless permeability.




 Fig. 2 The Flow domain and boundaries
In the figures 3 to 6 the free flow enters a porous medium. As figures show by decreasing Darcy parameter ( in fact decreasing of the permeability of the porous media) the thickness of the boundary layer decreases and finally disappears ( figure 5)
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Fig. 3 Velocity profile Da=0.4×10-3 Newtonian fluids. Free to porous flow
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Fig. 4 Velocity profile Da=0.4×10-4 Newtonian fluids. Free to porous flow
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Fig. 5 Velocity profile Da=0.4×10-5 Newtonian fluids. Free to porous flow
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Fig. 6 Velocity profile Da=0.4×10-2 . permeable wall.

[image: image28.wmf]0

0.1

0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

   
Fig. 7 Velocity profile Da=0.4×10-4 . permeable wall.

Free flow in duct with permeable wall is considered here in this work. Figures (6) and (7) illustrate flow field in this situation. When the flow pass over the permeable boundary because of leakage, velocity decreases and in the region with permeable wall flow direction changes toward the wall. Comparison of the figures (6) and (7) illustrate that by decreasing.  Da because of an increase in resistance to the flow in permeable wall, leakage decreases. The front-end in the present system guides the user to insert appropriate input at every stage. 

5 CONCLUSIONS

The developed computer implementation system has been used to study the effects of on flow hydrodynamics in coupled free/porous regimes in subsurface. The system has provided significant simplification and flexibility for the general user and as such should be considered as a novel hydroinformatics tool.
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